Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Zinc-ion battery with non-aqueous electrolyte and zinc-manganese spinel positive electrode

https://doi.org/10.29235/1561-8331-2024-60-2-115-120

Abstract

Zinc manganite spinel powder specific surface area was found to increase by an order of magnitude via a treatment with sulfuric acid. The specific surface area, determined by nitrogen adsorption, correlates with the specific capacity of zinc manganite spinel positive electrodes. Zinc manganite spinel subjected to a controllable acidic treatment is a promising material for the non-aqueous zinc-ion batteries.

About the Authors

U. V. Siamionau
Belarusian State
Belarus

Siamionau Uladzislau V. – Postgraduate Student

14, Leningradskaya Str., 220030, Minsk



Y. M. Aniskevich
Sejong University
Russian Federation

Aniskevich Yauhen M. – Ph. D. (Chemistry), Researcher

Gunja-Dong, Gwangjin-Gu, 05006, Seoul

 



A. R. Ivanchanka
Kaunas University of Technology
Lithuania

Ivanchanka Aliaksei R. – Student

19, Radvilėnų pl., 50299, Kaunas



G. A. Ragoisha
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

Ragoisha Genady A. – Ph. D. (Chemistry), Leading Researcher

14, Leningradskaya Str., 220006, Minsk



A. I. Kulak
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Kulak Anatoly I. – Academician of the National Academy of Sciences of Belarus, D. Sc. (Chemistry), Professor, Director

9/1, Surganov Str., 220072, Minsk



E. A. Streltsov
Belarusian State
Belarus

Streltsov Eugene A. – D. Sc. (Chemistry), Head of the Department

14, Leningradskaya Str., 220006, Minsk



References

1. Li M., Lu J., Chen Z., Amine K. 30 years of lithium-ion batteries. Advanced Materials., 2018, vol. 30, no. 33, pp. 1800561.

2. Lindagato P., Yang G., Macháček J., Irénée M., Anastase N., Kanimba Ntwali H. P. Lithium Metal: The Key to Green Transportation. Applied Sciences, 2023, vol. 13, no. 1, pp. 405.

3. Muldoon J., Bucur C. B., Gregory T. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chemical reviews, 2014, vol. 114, no. 23, pp.11683–11720.

4. Wang Y., Chen R., Chen T., Lv H., Zhu G., Ma L., Wang C., Jin Z., Liu J. Emerging non-lithium ion batteries. Energy Storage Materials, 2016, vol. 4, pp. 103–129.

5. Alfaruqi M. H., Mathew V., Gim J., Kim S., Song J., Baboo J. P., Choi S. H., Kim J. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chemistry of Materials, 2015, vol. 27, no. 10, pp. 3609–3620.

6. Song, M., Tan H., Chao D., Jin H. FanRecent advances in Zn-ion batteries. Advanced Functional Materials, 2018, vol. 28, no. 41, pp. 1802564.

7. Blanc L. E., Kundu D., Nazar L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule, 2020, vol. 4, no. 4, pp. 771–799.

8. Chang K., Chen W. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chemical Communications. 2011, vol. 47, iss. 14, pp. 4252–4254.

9. Das S. K., Mallavajula R., Jayaprakash N., Archer L. A. Self-assembled MoS2–carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance. Journal of Materials Chemistry, 2012, vol. 22, no. 26, pp. 12988–12992.

10. Kobayashi H., Fukumi Y., Watanabe H., Iimura R., Nishimura N., Mandai T., Tominaga Y., Nakayama M., Ichitsubo T., Imai H. Ultraporous, Ultrasmall MgMn2O4 Spinel Cathode for a Room-Temperature Magnesium Rechargeable Battery. ACS nano, 2023, vol. 17, no. 3, pp. 3135–3142.

11. Zhang N., Cheng F., Liu Y., Zhao Q., Lei K., Chen C., Liu X., Chen J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. Journal of the American Chemical Society, 2016, vol. 138, no. 39, pp. 12894–12901.

12. Han S. D., Kim S., Li D., Petkov V., Yoo H. D., Phillips P., Wang H., Kim J., More K., Key B., Klie R. F., Cabana J., Stamenkovic V. R., Fister T. T., Marković N. M., Burrell A. K., Tepavcevic S., Vaughey J. T. Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery. Chemistry of Materials, 2017, vol. 29, no. 11, pp. 4874–4884.

13. Stoševski, I., Bonakdarpour A., Fang B., Lo P., Wilkinson D. P. Formation of MnxZny(OH)z SO4·5H2O – not intercalation of Zn – is the basis of the neutral MnO2/Zn battery first discharge reaction. Electrochimica, 2021, vol. 390, pp. 138852.

14. Siamionau U. V., Aniskevich Y., Ragoisha G. A., Streltsov E. A. MnO2 electrodeposition at the positive electrode of zinc-ion aqueous battery containing Zn2+ and Mn2+ cations. Journal of Solid State Electrochemistry, 2023, vol. 27, pp. 1911–1918.

15. Siamionau U., Aniskevich Y., Mazanik A., Kokits O., Ragoisha G., Jo J. H., Myung S.-T., Streltsov E. Rechargeable zinc-ion batteries with manganese dioxide cathode: How critical is choice of manganese dioxide polymorphs in aqueous solutions? Journal of Power Sources, 2022, vol. 523, pp. 231023.

16. Deng Y., Tang S., Zhang Q., Shi Z., Zhang L., Zhan S.-Z., Chen G. Controllable synthesis of spinel nano-ZnMn2O4 via a single source precursor route and its high capacity retention as anode material for lithium ion batteries. Journal of Materials Chemistry, 2011, vol. 21, no. 32, pp. 11987–11995.

17. Gregg S. J., Sing K. Adsorption surface area and porosity. London: Academic Press, 1982. 303 p.


Review

Views: 506


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)