Investigation of the properties of alumophosphate solutions and products crystallized from them
https://doi.org/10.29235/1561-8331-2024-60-2-121-128
Abstract
The physicochemical properties of freshly prepared alumophosphate solutions obtained in the Al(OH)3 – H3PO4 – H2O system with the molar ratio n(Al2O3) : n(P2O5) = 1.0 : 2.75 have been investigated. The density and temperature dependence of the dynamic viscosity of the studied solutions with a concentration of P2O5 300–485 g/l were studied. The values of the apparent activation energy of the viscous flow (Eη) of alumophosphate solutions are calculated and the concentration range (390–420 g/l P2O5) is established, in which Eη is practically constant and is 15.0 kJ/mol. It is suggested that the change in the activation energy of the viscous flow of alumophosphate solutions is due to their structure determined by the composition of aluminum phosphate complexes. The influence of the viscosity properties of alumophosphate solutions and their concentration on the crystallization process of hydrated alumophosphate, in particular, the duration of the induction period and the rate of phase formation, is shown.
About the Authors
L. S. EshchenkoBelarus
Eshchenko Lyudmila S. – D. Sc. (Engineering), Professor, Professor of the Department
13a, Sverdlov Str., 220006, Minsk
А. V. Paniatouski
Belarus
Paniatouski Aleh V. – M. Sc., Postgraduate Student
13a, Sverdlov Str., 220006, Minsk
References
1. Hao T. Electrorheological Fluids. The Non-aqueous Suspensions. 1st ed. Cambridge, Massachusetts, USA, Elsevier Science, 2005, vol. 22, 578 p. https://doi.org/10.1016/s1383-7303(05)x8015-2
2. Eshchenko L. S., Ponyatovskii O. V., Korobko E. V., Novikova Z. A. Razrabotka sostavov dispersnykh napolnitelei dlya ERS [Development of compositions of dispersed fillers for ERS]. Materialy XI Mezhdunarodnoi nauchnoi konferentsii «Fullereny i nanostruktury v kondensirovannykh sredakh» [Materials of the international scientific conference “Fullerenes and nanostructures in condensed matte”], 24–26 November, Minsk, 2020. Minsk, Institut teplo- i massoperenosa imeni natsional’noi akademii nauk Belarusi, 2020, pp. 75–81 (in Russian).
3. Eshchenko L. S., Korobko E. V., Paniatouski A. V. Preparation and electrorheological properties of anhydrous aluminum orthophosphate. Inorganic Materials, 2023, vol. 59, no. 1, pp. 75–80. https://doi.org/10.1134/S0020168523010077
4. Kniep R. Orthophosphates in the ternary system Al2O3-P2O5-H2O. Angewandte Chemie International Edition in English, 1986, vol. 25, no. 6, pp. 525−534. https://doi.org/10.1002/anie.198605251
5. Kolb E. D., Grenier J. C., Laudise R. A. Solubility and Growth of A1PO4 in a hydrothermal solvent: HCl. Journal of Crystal Growth, 1981, vol. 51, iss. 2, pp. 178−182. https://doi.org/10.1016/0022-0248(81)90299-2
6. Kolb E. D., Barns R. L., Laudise R. A., Grenier J. C. Solubility, crystal growth and perfection of aluminium orthophosphate. Journal of Crystal Growth, 1980, vol. 50, iss. 2, pp. 83−92. https://doi.org/10.1109/FREQ.1979.200302
7. Bothe Jr. J. V., Brown P. W. Reactivity of alumina toward phosphoric acid. Journal of the American Ceramic Society, 1993, vol. 76, iss. 9, pp. 2353–2358. https://doi.org/10.1111/j.1151-2916.1993.tb07776.x
8. Greben’ko N. V., Eshchenko L. S., Kushel’ M. I. Vliyanie uslovii polucheniya fosfatov alyuminiya na ikh fizikokhimicheskie svoistva [Influence of conditions for obtaining aluminum phosphates on their physicochemical properties]. Izvestiya VUZov. Khimiya i khimicheskaya tekhnologiya = Russian jornal of chemistry and chemical technology, 1976, vol. 19, iss. 7, pp. 1070–1073 (in Russian).
9. Greben’ko N. V., Eshchenko L. S., Pechkovskii V. V. Poluchenie i svoistva ortofosfatov alyuminiya [Preparation and properties of aluminum orthophosphates]. Izvestiya Akademii nauk SSSR. Neorganicheskie materialy = Proceedings of the NAS of the USSR. Inorganic materials, 1978, vol. 14, iss. 3, pp. 136–140 (in Russian).
10. Eshchenko L. S., Paniatouski A. V. Features of the synthesis of highly dispersed alumophosphates AlPO4 · nH2O. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnyh navuk = Proceedings of the National Academy of Science of Belarus. Chemical series, 2021, vol. 57, no. 3, pp. 310–319 (in Russian). https://doi.org/10.29235/1561-8331-2021-57-3-310-319
11. Eshchenko L. S., Paniatouski A. V. Preparation of microcrystalline hydrated aluminum orthophosphate. In: The latest research in modern science: experience, traditions and innovations: Collected scientific articles of the X International scientific conference on February 18–19, Morrisville, NC, USA, 2020. Lulu Press, Morrisville, NC, USA, 2020, pp. 21–26.
12. Rakheb I. Sintez mikroporistykh kristallicheskikh fosfatov alyuminiya [Synthesis of microporous crystalline aluminum phosphates]. Ph. D. thesis. Moscow, 1991, 205 p.
13. Shirinkin N. G., Berdysheva N. A. Fiziko-khimicheskie issledovaniya peresyshchennykh vodnykh rastvorov ftorida alyuminiya [Physico-chemical studies of supersaturated aqueous solutions of aluminum fluoride] // Trudy ural’skogo nauchno-issledovatel’skogo khimicheskogo instituta = Proceedings of the Ural Chemical Research Institute, 1978, no. 5, pp. 21–28,. (in Russian).
14. Geller B. E., Geller A. A., Chirtulov V. G. Prakticheskoe rukovodstvo po fizikokhimii voloknoobrazuyushchikh polimerov: Uchebnoe posobie dlya vuzov [Practical guide to the physicochemistry of fiber-forming polymers: Textbook for universities]. 2nd ed. Moscow, Khimiya = Chemistry Publ., 1996, 432 p.
15. Lisin P. A., Musina O. N., Kister I. V. Strukturno-mekhanicheskaya i termodinamicheskaya kharakteristika bioiogurta [Structural-mechanical and thermodynamic characteristics of bio-yogurt]. Tekhnika i tekhnologiya pishchevykh proizvodstv = Food Processing. Techniques and Technology, 2014, no. 1, pp. 54–59 (in Russian).
16. Gerasimov V. V. Neorganicheskie polimernye materialy na osnove oksidov kremniya i fosfora [Inorganic polymer materials based on silicon and phosphorus oxides]. Moscow, Stroiizdat Publ., 1993, 295 p. (in Russian).