Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Synthesis of N-aryl and pyridine-substituted derivatives of valine, leucine and isoleucine

https://doi.org/10.29235/1561-8331-2024-60-2-145-152

Abstract

A preparative method for the synthesis of N-aryl- and pyridine-substituted valine, leucine, isoleucine derivatives by condensation of amino acids sodium salts with benzaldehyde, salicylaldehyde, vanillin, p-chlorobenzaldehyde, 3-pyridinecarbaldehyde and subsequent reduction with sodium borohydride has been developed.

About the Authors

Е. А. Akishina
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Akishina Ekaterina A. – Researcher

13, Surganov Str., 220072, Minsk



V. А. Knizhnikov
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Knizhnikov Valeriy A. – D. Sc. (Chemistry)



L. А. Popova
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Popova Ludmila A. – Senior Researcher

13, Surganov Str., 220072, Minsk



Е. G. Karankevich
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Karankevich Elena G. – Ph. D. (Chemistry), Head of the Laboratory

13, Surganov Str., 220072, Minsk



References

1. Bizunok N. A. Pharmacodynamic interactions of N-substituted derivatives of L-proline and cellular modulators of various types of action on the model of Fc-gamma-R-dependent phagocytosis. Vestsi Natsyyanal’nai akademii navuk Belarusi. Serуya medуtsуnskikh navuk = Proceedings of the National Academy of Sciences of Belarus. Medical series, 2012, no 1, pp. 53–62 (in Russian).

2. Ganguly A., Chakraborty P., Banerjee K., Choudhuri S. K. The role of a Schiff base scaffold, N-(2-hydroxy acetophenone) glycinate-in overcoming multidrug resistance in cancer. Eur. J. Pharm. Sci., 2014, vol. 51, pp. 96–109. https://doi.org/10.1016/j.ejps.2013.09.003

3. Vale N., Ferreira A., Matos J., Fresco P., Gouveia M. J. Amino Acids in the Development of Prodrugs. Molecules, 2018, vol. 23, no. 9, pp. 2318. https://doi.org/10.3390/molecules23092318

4. Al-Garawi Z. S. M., Tomi I. H. R., Al-Daraji A. H. R. Synthesis and Characterization of New Amino Acid-Schiff Bases and Studies their Effects on the Activity of ACP, PAP and NPA Enzymes (in vitro). E-Journal of Chemistry, 2012, vol. 9, no. 2, pp. 962–969. https://doi.org/10.1155/2012/218675

5. Arunadevi A., Raman N. Biological response of Schiff base metal complexes incorporating amino acids – a short review. Journal of Coordination Chemistry, 2020, vol. 73, no. 15, pp. 2095–2116. https://doi.org/10.1080/00958972.2020.1824293.

6. Sharif S., Denisov G. S., Toney M. D., Limbach H. H. NMR studies of solventassisted proton transfer in a biologically relevant Schiff base: Toward a distinction of geometric and equilibrium H-bond isotope effects. Journal of the American Chemical Society, 2006, vol. 128, no. 10, pp. 3375–3387. https://doi.org/10.1021/ja056251v

7. Shepelenko E. N., Tsukanov A. V., Revinskii Yu. V., Dubonosov A. D., Bren’ V. A., Minkin V. I. Benzoid-quinoid tautomerism of Schiff bases and their structural analogs: LIII. Schiff bases derived from 5-hydroxy- and 5-hydroxy-6- nitro-2,3-diphenyl-1-benzofuran-4-carbaldehydes. Russian Journal of Organic Chemistry, 2007, vol. 43, no. 4, pp. 559–563 (in Russian). https://doi.org/10.1134/S1070428007040124

8. Otani N., Fayeulle A., Nakane D., Léonard E., Akitsu T. Synthesis, Identification and Antibacterial Activities of Amino Acid Schiff Base Cu(II) Complexes with Chlorinated Aromatic Moieties. Appl. Microbiol., 2022, vol. 2, no. 2, pp. 438-448. https://doi.org/10.3390/applmicrobiol2020032

9. Li L.–J., Wang C., Tian C.,Yang X.-Y., Hua X.-X., Du J.-L. Water-soluble platinum(II) complexes of reduced amino acid Schiff bases: synthesis, characterization, and antitumor activity. Research on Chemical Intermediates, 2012, vol. 39, no. 2, pp. 733–746. https://doi.org/10.1007/s11164-012-0593-y

10. Pervaiz M., Ahmad I., Yousaf M., Kirn S., Munawar A., Saeed Z., Adnan A., Gulzar T., Kamal T., Ahmad A., Rashid A. Synthesis, spectral and antimicrobial studies of amino acid derivative Schiff base metal (Co, Mn, Cu, and Cd) complexes. Spectrochimica Acta, Part A, 2019, vol. 206, pp. 642–649. https://doi.org/10.1016/j.saa.2018.05.057

11. Li L.-J., Wang C., Tian C., Yang X.-Y., Hua X.-X., Du J.-L. Water-soluble platinum(II) complexes of reduced amino acid Schiff bases: synthesis, characterization, and antitumor activity. Res. Chem. Intermed., 2012, vol. 39, no. 2, pp. 733–746. https://doi.org/10.1007/s11164-012-0593-y

12. Pervaiz M., Yousaf M., Ahmad I., Munawar A., Saeed Z., Adnan A., Gulzar T., Kirn S., Kamal T., Ahmad A. Synthesis, spectral and antimicrobial studies of amino acid derivative Schiff base metal (Co, Mn, Cu, and Cd) complexes. Spectrochim. Acta, Part A., 2019, vol. 206, pp. 642–649. https://doi.org/10.1016/j.saa.2018.05.057

13. Fu X., Li Z., Wei J., Sun J., Li Z. Schiff base and reductive amination reactions of α-amino acids: a facile route toward N-alkylated amino acids and peptoid synthesis. Polymer Chemistry, 2018, vol. 9, pp. 4617–4624. https://doi.org/10.1039/c8py00924d

14. Ma T., Xu J., Wang Y., Yu H., Yang Y., Liu Y., Ding W., Zhu W., Chen R., Ge Zh., Tan Y., Jia L., Zhu T. Ternary copper(II) complexes with amino acid chains and heterocyclic bases: DNA binding, cytotoxic and cell apoptosis induction properties. Journal of Inorganic Biochemistry, 2015, vol. 144, pp. 38–46. https://doi.org/10.1016/j.jinorgbio.2014.12.011

15. Knizhnikov V. A., Azizbekyan O. P., Prishchepenko V. M. Azomethines on the basis of sodium salts of valine and leucine. Russian Journal of General Chemistry, 2003, vol. 73, no. 9, pp. 1445–1447 (in Russian). https://doi.org/10.1023/B:RUGC.0000015996.53534.48

16. Degner A., Carlsson H., Karlsson I., Eriksson J., Pujari S. S., Tretyakova N. Y., Törnqvist M. Å. Discovery of Novel N-(4-Hydroxybenzyl)valine Hemoglobin Adducts in Human Blood. Chemical Research in Toxicology, 2018, vol. 31, pp. 1305–1314. https://doi.org/10.1021/acs.chemrestox.8b00173

17. Dzygiel P., Reeve T. B., Piarulli U., Krupicka M., Tvaroska I., Gennari C. Resolution of RacemicN-Benzyl α-Amino Acids by Liquid-Liquid Extraction: A Practical Method Using a Lipophilic Chiral Cobalt(III) Salen Complex and Mechanistic Studies. European Journal of Organic Chemistry, 2008, vol. 2008, iss. 7, pp. 1253–1264. doi:10.1002/ejoc.200701101

18. Dubey M., Koner R. R., Ray M. Sodium and Potassium Ion Directed Self-Assembled Multinuclear Assembly of Divalent Nickel or Copper andl-Leucine Derived Ligand. Inorganic Chemistry, 2009, vol. 48, no. 19, pp. 9294–9302. https://doi.org/10.1021/ic9011444


Review

Views: 453


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)