Sol-gel synthesis, structure and magnetic properties of barium aluminoferrite for use in magnetorheological fluids
https://doi.org/10.29235/1561-8331-2024-60-4-271-280
Abstract
A promising area of application of micro- and nanosized magnetic particles is the creation of magnetorheological materials in which such particles are a component of a complex dispersed phase. Of greatest importance is the high shear stress in suspensions based on magnetic particles when a magnetic field is applied, as well as low value of the coercive force. The aim of the work was to study the structure, morphology, and magnetic properties of barium aluminoferrite powders, and to evaluate their effectiveness in magnetic fields by the rheological properties of magnetorheological fluids fabricated using them. Barium aluminoferrite BaAl2Fe10O19 of hexagonal structure was synthesized by the citrate sol-gel method. Using the methods of X-ray phase analysis, scanning electron microscopy, IR spectroscopy, magnetometry, its structural and microstructural features, and magnetic properties were studied. The powder had a maximum specific magnetization M = 20.4 A × m2/kg and a coercive force Hc = 4.8 kOe (at 300 K). The high shear stress (3.5 kPa) at a relatively low magnetic field induction (625 mT) makes it possible to consider the resulting material as promising for use as an additional functional filler for magnetorheological fluids.
About the Authors
Yu. S. HaidukBelarus
Haiduk Yulyan S. ‒ Ph. D. (Chemistry), Head of the Laboratory
14, Leningradskaya Str., 220030, Minsk
E. V. Korobko
Belarus
Korobko Evgenia V. ‒ D. Sc. (Engineering), Head of the Laboratory
15, Brovko Str., 220072, Minsk
R. P. Golodok
Belarus
Golodok Robert P. ‒ Researher
14, Leningradskaya Str., 220030, Minsk
A. E. Usenka
Belarus
Usenka Alexandra E. ‒ Ph. D. (Chemistry), Head of the Department
14, Leningradskaya Str., 220030, Minsk
V. V. Pankov
Belarus
Pankov Vladinir V. ‒ D. Sc. (Chemistry), Professor, Professor of the Department
14, Leningradskaya Str., 220030, Minsk
References
1. Khan, S.A., Suresh, A., Seetha Ramaiah, N. Principles, Characteristics and Applications of Magneto Rheological Fluid Damper in Flow and Shear Mode. Procedia Materials Science, 2014, vol. 6, pp. 1547–1556. https://doi.org/10.1016/j.mspro.2014.07.136
2. Kordonski W. I., Shorey A. B., Tricard M. Magnetorheological Jet (MR Jet[sup TM]) Finishing Technology. Journal of Fluids Engineering, 2006, vol. 128, iss. 1, pp. 20. https://doi.org/10.1115/1.2140802
3. Belyaev E. S., Ermolaev A. I., Titov E. Yu., Tumakov S. F. Magnetorheological fluids: technologies of creation and application. Ed. by A. S. Plekhov, Nizhny Novgorod State Technical University n.a. R. E. Alekseev, 2017. 94 p. (in Russian).
4. Jordan A., Scholz R., Wust P., Fak H. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic fluid induced excitation of biocompatible supeparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 1999, vol. 201, iss. 1‒3, pp. 413‒419. https://doi.org/10.1016/s0304-8853(99)00088-8
5. Marie H., Plassat V., Lesier S. Magnetic-fluid-loaded liposomes for MR imaging and therapy of cancer. Journal of Drug Delivery Science and Technology, 2013, vol. 23, no. 1, pp. 25‒37. https://doi.org/10.1016/S1773-2247(13)50004-9
6. Korobko E. V., Pankov V. V., Kotikov D. A., Novikova Z. A., Novik E. S. Nanodispersed fillers based on iron oxide for the complex dispersed phase of magnetically controlled hydraulic fluids. Nanostruktury v kondensirovannykh sredakh: sb. nauch. st. [Nanostructures in condensed media. Collection of scientific articles]. Minsk, A. V. Luikov Institute of Heat and Mass Transfer of the NAS of Belarus, 2018, pp. 182‒188 (in Russian).
7. Chand M., Kumar S., Shankar A., Porwal R. The size induced effect on rheological properties of Co-ferrite based ferrofluid. Journal of Non-Crystalline Solids, 2013, vol. 361, pp. 38‒42. https://doi.org/10.1016/J.JNONCRYSOL.2012.10.003
8. Manouchehri S., Ghasemian Z., Shahbazi-Gahrouei D., Abdolah M. Synthesis and characterization of cobalt-zinc ferrite nanoparticles coated with DMSA. Chem Xpress, 2013, vol. 2, iss. 3, pp. 147–152.
9. Lopez J., Gonzalez-Bahamon L. F., Prado J., Caicedo J. C. Study of magnetic and structural properties of ferrofluids based on Cobalt-Zinc ferrite nanoparticles. Bulletin of the American Physical Society, 2012, vol. 324, iss. 4, pp. 394‒402. https://doi.org/10.1016/J.JMMM.2011.07.040
10. Singhal S., Namgyal T., Bansal S., Chandra K. Effect of Zn Substitution on the Magnetic Properties of Cobalt Ferrite Nano Particles Prepared Via Sol-Gel Route. Journal of Electromagnetic Analysis and Applications, 2010, vol. 2, iss. 6, pp. 376–381. http://doi.org/10.4236/jemaa.2010.26049
11. Rajendra S. G., Chae S. Y., Mane R. S., Han S.-H. Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application. Journal of Electrochemistry, 2011, iss. 1, art. ID 729141. https://doi.org/10.4061/2011/729141
12. Chandrashekhar A., Ladole V. Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application. International Journal of Chemical Science, 2012, vol. 10, iss. 3, pp. 1230‒1234. https://doi.org/10.4061/2011/729141
13. Raghuvanshi S., Kane S. N., Tatarchuk T. R., Mazaleyrat F. Effect of Zn addition on structural, magnetic properties, antistructural modeling of Co1−xZnxFe2O4 nano ferrite. AIP Conference Proceedings, 2018, vol. 1953, iss. 1, art. ID 030055. https://doi.org/10.1063/1.5032390
14. Haiduk Yu. S., Korobko E. V., Kotikov D. A., Svito I. A., Usenka A. E., Pankov V. V. Preparation and characterization of cobalt and cobalt-zinc ferrites for magnetorheological materials. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases, 2022, vol. 24, no. 1, pp. 19–28 (in Russian). https://doi.org/10.17308/kcmf.2022.24/9051
15. Sawadzky G. A., Van der Woude F., Morrish A. H. Cation Distributions in Octahedral and Tetrahedral Sites of the Ferrimagnetic Spinel CoFe2O4. Journal of Applied Physics, 1968, vol. 39, iss. 2, pp. 1204–1206. https://doi.org/10.1063/1.1656224
16. Haiduk, Yu.S., Korobko E. V., Sheutsova K. A., Kotsikau D. A., Svito I. A., Usenka A. E., Ivashenka D. U., Fahmi A., Pankov V. V. Synthesis, structure and magnetic properties of cobalt-zinc nanoferrite for magnetorheological fluids. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases, 2020, vol. 22, no. 2, pp. 28–38 (in Russian). https://doi.org/10.17308/kcmf.2020.22/2526
17. Keyu Chen, Liangchao Li, Guoxiu Tong, Ru Qiao. Fabrication and absorbing property of microwave absorbes based on BaAl2Fe10O19 and poly(o toluidine). Synthetic Metals, 2011, vol. 161, iss. 21‒22, pp. 2192‒2198. https://doi.org/10.1016/j.synthmet.2011.07.019
18. Starikov, A. Yu., Sherstyuk D. P., Sander E. E., Zhivulin V. E., Vinnik D. A. Study of the effect of aluminum substitution on the electrical properties of barium hexaferrite. Vestnik Soveta molodykh uchenykh i spetsialistov Chelyabinskoi oblasti – Vestnik SMUS74 [Bulletin of the Council of Young Scientists and Specialists of the Chelyabinsk Region], 2018, vol. 1, no. 3, pp. 67‒69 (in Russian). https://smus74.ru/content/vypusk-3-22-2018.
19. Kovalyov A. I., Vinnik D. A., Zherebcov D. A., Belaya E. A. Sol-gel synthesis of nanodispersed solid solutions based on barium hexaferrite of composition SrxBa(1–x)Fe12O19. Vestnik Yuzhno-Ural’skogo Gosudarstvennogo universiteta. Seriya “Khimiya” = Bulletin of the South Ural State University. Series: Chemistry, 2023, vol. 15, no. 1, pp. 131‒137 (in Russian).
20. Pullar R. C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Progress in Materials Science, 2012, vol. 57, iss, 7, pp. 1191‒1334. https://doi.org/10.1016/j.pmatsci.2012.04.001
21. Nikmanesh H., Hoghoghifard S., Hadi-Sichami B. Study of the structural, magnetic, and microwave absorption properties of the simultaneous substitution of several cations in the barium hexaferrite structure. Journal of Alloys and Compounds, 2019, vol. 775, pp. 1101‒1108. https://doi.org/10.1016/j.jallcom.2018.10.051
22. Petrova E. G., Shavshukova Ya. A., Kotsikau D. A., Laznev К. V., Pankov V. V. Synthesis of nano-dimensionalcobalt-zinc ferrites by the low-temperature spray-drying with subsequent thermolysis. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2018, vol. 54, no. 4, pp. 406–412 (in Russian). https://doi.org/10.29235/1561-8331-2018-54-4-406-412
23. Auwal I. A., Ünal B., Baykal A., Kurtan U., Amir M. D., Yildiz A., Sertkol M. Electrical and Dielectric Properties of Y3+-Substituted Barium Hexaferrites. Journal of Superconductivity and Novel Magnetism, 2017, vol. 30, iss. 7, pp. 1813–1826. https://doi.org/10.1007/s10948-017-3978-8
24. Durmus Z., Unal B., Toprak M. S., Aslan A., Baykal A. Synthesis and characterization of poly(1-vinyl-1,2,4-triazole) (PVTri)-barium hexaferrite nanocomposite. Physica B, Condensed Matter, 2011, vol. 406, iss. 11, pp. 2298–2302. https://doi.org/10.1016/j.physb.2011.03.063
25. Shalini M. G., Subha A., Sahu B., Sahoo S. C. Phase evolution and temperature dependent magnetic properties of nanocrystalline barium hexaferrite. Journal of Materials Science: Materials in Electronics, 2019, vol. 30, pp. 13647–13654. https://doi.org/10.1007/s10854-019-01734-x
26. Feng W. J., Zhao X., Zheng W. Q., Gang J. T., Cao Y., Yang, H. Microwave Absorption Properties of BaFe12O19 Prepared in Different Temperature with Polyaniline Nanocomposites. Advanced Materials Research, 2017, vol. 1142, pp. 211–215. https://doi.org/10.4028/www.scientific.net/amr.1142.211
27. Chernyakova K. V., Pankov V. V., Ivanovskaya M. I., Lomonosov V. A. Structure and magnetic properties of hexagonal barium ferrite. Vestnik Belorusskogo gosudarstvennogo universiteta. Seriya 2, Khimiya. Biologiya. Geografiya = Bulletin of the Belarusian State University. Series 2. Chemistry, biology, geography, 2008, no. 1, pp. 9‒13 (in Russian).
28. Zahari M. H., Guan B. H., Chuan L. K. Structural and magnetic properties of hexagonal barium ferrite synthesized through the sol-gel combustion route. AIP Conference Proceedings, 2016, vol. 1787, iss. 1, pp. 1‒6. https://doi.org/10.1063/1.4968136