Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

New gadolinium oxotellurites: synthesis and characteristics

https://doi.org/10.29235/1561-8331-2024-60-4-281-289

Abstract

Gadolinium oxotellurites GdMeTeO4.5 (Me – Mg, Ca) were synthesized using ceramic technology with solidphase interaction of oxides Gd2O3 and TeO2 with carbonates MgCO3 and CaCO3. X-ray characteristics were obtained using an Empyrean powder diffractometer and specialized programs Data Collector version 7.7h and X’Pert HighScore Plus using the Crystallography Open Database and PDF-2. Based on X-ray studies, it was established that the synthesized tellurites crystallize in a tetragonal syngony. The reliability and correctness of the indexing results is confirmed by the satisfactory agreement between the experimental and calculated parameters of the crystal lattice, unit cell volumes, X-ray and pycnometric densities. A study of the temperature dependence of the electrical resistance of gadolinium-magnesium tellurite has established that the compound may have semiconductor properties, with a band gap ∆E = 2.64 ± 0.13 ∙ 10–2 eV. The results can be used for the synthesis and study of new derivatives of tellurium and rare earth elements and are of interest for electronic technology. X-ray characteristics of new tellurites of s-, f-elements are the starting materials for inclusion in fundamental data banks and reference books.

About the Authors

K. T. Rustembekov
Karaganda Buketov University
Kazakhstan

Rustembekov Kenzhebek T. – Dr. Sc. (Chemistry), Professor, Academician of Kazakhstan National Academy of Natural Sciences

28, Universitetskaya Str., 100024, Karaganda



A. A. Toibek
Karaganda Buketov University
Kazakhstan

Toibek Aitolkyn A. – Ph. D. Student

28, Universitetskaya Str., 100024, Karaganda



B. K. Kasenov
Zh. Abishev Chemical Metallurgical Institute
Kazakhstan

Kasenov Bulat K. – Dr. Sc. (Chemistry), Professor, Academician of Kazakhstan National Academy of Natural Sciences

63, Ermekov Str., 100050, Karagandy



M. Stoev
South-West University ˮNeofit Rilskiˮ
Bulgaria

Stoev Mitko – Ph. D., Associate Professor

66, Ivan Mikhailov Str., Blagoevgrad



References

1. Zhu J., Li, H., Zhong, L., Xiao P., Xu X., Yang X., Li J. Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catalysis, 2014, vol. 4, no. 9, pp. 2917–2940. https://doi.org/10.1021/cs500606g

2. Li X., Zhao H., Liang J., Luo Y., Chen G., Shi X., Sun X. A-site perovskite oxides: an emerging functional material for electrocatalysis and photocatalysis. Journal of Materials Chemistry A, 2021, vol. 9, no. 1, pp. 6650–6670. https://doi.org/10.1039/d0ta09756j

3. Lee H. E., Jo H., Lee M. H., Ok K. M. Unique synthesis, structure determination, and optical properties of seven new layered rare earth tellurite nitrates, RE(TeO3)(NO3) (RE = La, Nd, Eu, Gd, Dy, Er, and Y). Journal of Alloys and Compounds, 2021, vol. 851, pp. 156855. https://doi.org/10.1016/j.jallcom

4. Wen M., Wu H., Hu C., Yang Z., Pan S. Experiment and First-Principles Calculations of A2Mg2TeB2O10 (A = Pb, Ba): Influences of the Cosubstitution on the Structure Transformation and Optical Properties. Inorganic Chemistry, 2019, vol. 58, no. 16, pp. 11127–11132. https://doi.org/10.1021/acs.inorgchem.9b01693

5. Lu W., Gao Z., Wu Q., Tian X., Sun Y., Liu, Y., Tao X. Tailored fabrication of a prospective acousto–optic crystal TiTe3O8 endowed with high performance. Journal of Materials Chemistry C, 2018, vol. 6, no. 10, pp. 2443–2451. https://doi.org/10.1039/c7tc05382g

6. Ok K. M., Chi E. O., Halasyamani P. S. Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chemical Society Reviews, 2006, vol. 35, no. 8, pp. 710. https://doi.org/10.1039/b511119f

7. Berdonosov P. S., Olenev A. V., Dolgikh V. A., Lightfoot P. The synthesis and crystal structures of the first rare-earth alkaline-earth selenite chlorides MNd10(SeO3)12Cl8 (M=Ca and Sr). Journal of Solid State Chemistry, 2007, vol. 180, pp. 3019–3025. https://doi.org/10.1016/j.jssc.2007.08.019

8. Geng L., Wang Y. Synthesis and characterization of ammonium potassium tellurium polyoxomolybdate: (NH4)2K2TeMo6O22·2H2O with one-dimensional anionic polymeric chain [TeMo6O22]4−. Crystals, 2021, vol. 11, no. 4, pp. 375. https://doi.org/10.3390/cryst11040375

9. Christy A. G., Mills S. J., Kampf A. R. A review of the structural architecture of tellurium oxycompounds. Mineralogical Magazine, 2016, vol. 80, no. 3, pp. 415–545. https://doi.org/10.1180/minmag.2016.080.093

10. Rustembekov K. T., Dyusekeeva A. T., Bekturganova A. Z., Kasenov B. K., Makhatova N. A., Fomin V. N. Heat capacity and thermodynamic functions of thulium tellurites in the range of 298.15–673 K. Russian Journal of Physical Chemistry A, 2016, vol. 90, no. 2, pp. 263–266. https://doi.org/10.1134/s0036024416020266

11. Rustembekov K. T., Bekturganova A. Z. X-ray diffraction and thermodynamic characteristics for tellurite of the composition Li2 CeTeO5. Russian Journal of Physical Chemistry A, 2017, vol. 91, no. 4, pp. 622–626. https://doi.org/10.1134/S0036024417040252

12. Rustembekov K. T., Kasenov B. K., Bekturganova A. Z., Kasymova M. S. Thermodynamic and Electrophysical Pro- perties of La2SrNiTeO7. Russian Journal of Physical Chemistry A, 2019, vol. 93, no. 9, pp. 1657–1661. https://doi.org/10.1134/S0036024419090206

13. Kivilis S. S. Technique for measuring the density of liquids and solids. Moscow, Standargiz Publ., 1959. 192 p. (in Russian).

14. MeterRLC (LCR-781). Operation manual. Moscow, ZAO ˮPriSTˮ, 2012, pp. 3 (in Russian).

15. Kuznetsova G. A. Methodical instructions. Irkutsk, 2005. 28 p. (in Russian).

16. Crystallography Open Database. Available at: http://www.crystallography.net/cod/result.php

17. Rustembekov K. T., Dyusekeyeva A. T., Sharipova Z. M., Zhumadilov Ye. K. X-ray, thermodynamic and electrophysical properties of double sodium-zinc tellurite. Izvestija Tomskogo politehnicheskogo universiteta = News of Tomsk Polytechnic University, 2009, vol. 315, no. 3, pp. 16–19 (in Russian).

18. Kasenov B. K., Kasenova Sh. B., Sagintaeva Zh. J., Kuanyshbekov E. E., Mukhtar A. A., Kakenov K. S. Thermodynamics and Electrophysics of New LaCaCuZnMnO6 Copper – Zinc Manganite of Lanthanum and Calcium. High Temperature, 2022, vol. 60, pp. 474–478. https://doi.org/10.1134/s0018151x22020225

19. Venevtsev Yu. N., Politova Ye. D., Ivanov S. A. Ferroelectric and antiferroelectrics of the barium titanate family. Moscow, Khimiya Publ., 1985. 255 p. (in Russian).

20. Tretyakov Yu. D., Putlyayev V. I. Introduction to the chemistry of solid-phase materials. Moscow, Nauka Publ., 2006. 399 p. (in Russian).

21. Chemical Encyclopedia. Moscow, Soviet Encyclopedia Publ., 1990, vol. 2, рр. 1110–1111 (in Russian).


Review

Views: 697


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)