Preparation, morphology, antiradical and biological activity of quercetin-containing nanoparticles of zein and their submicron aggregates
https://doi.org/10.29235/1561-8331-2024-60-4-300-313
Abstract
Nanoparticles of corn prolamine protein zein (NPQ) containing 0.005–0.26 g/g quercetin (Q) were prepared by desolvation of a 25–30 mg/mL ethanol protein solution containing the encapsulated compound with an aqueous polystyrene sulfonate. The size of zein nanoparticles and their aggregates was characterized by dynamic light scattering and atomic force microscopy; the quercetin content – by the Folin-Ciocalteu assay. While the quercetin/zein ratio in solution is less than 0.08 g/g, the polyphenol is quantitatively included in the nanoparticles, and their hydrodynamic diameter is 60–75 nm. As the quercetin/zein ratio rises to 0.20 g/g, the average particle diameter increases to 150 nm. In concentrated dispersions, aggregates with a diameter of 500–600 nm are formed. The kinetics of quercetin release from NPQ with different mass fractions of Q in distilled water and solutions simulating the environment of the stomach and intestines at 37 °C were studied.
Zein nanoparticles exhibit weak activity in the reaction with ABTS cation-radicals. Quercetin encapsulated in the zein matrix generally retains the antiradical activity characteristic of the free flavonoid, however, the rate of decolorization of ABTS cation-radicals decreases due to the prolonged release of quercetin from NPQ. The cytoprotective properties of quercetin in zein nanoparticles are significantly reduced and manifest themselves only in partial preservation of the integrity of cell membranes and a decrease in the release of lactate dehydrogenase from UV-C irradiated HaCaT cells. In contrast to free quercetin, the introduction of Q in zein nanoparticles or their submicron aggregates increases the number of metabolically dead UV-C-irradiated HaCaT cells, enhancing the cytotoxic effect of UV radiation. Empty zein aggregates of submicron size have a similar effect.
About the Authors
T. G. ShutavaBelarus
Shutava Tatsiana G. – Ph. D. (Chemistry), Associate Professor, Leading Researcher
36, F. Skaryna Str., 220084, Minsk
A. I. Potapovich
Belarus
Potapovich Alla I. – Ph. D. (Biology), Leading Researcher
4, Nezavisimosti Ave., 220030, Minsk
T. V. Kostyuk
Belarus
Kostyuk Tatyana V. – Junior Researcher
4, Nezavisimosti Ave., 220030, Minsk
K S. Livanovich
Belarus
Livanovich Kanstantsin S. – Ph. D. (Chemistry), Senior Researcher
36, F. Skaryna Str., 220084, Minsk
V. A. Kostyuk
Belarus
Kostyuk Vladimir A. – D. Sc. (Chemistry), Associate Professor, Head of the Laboratory
4, Nezavisimosti Ave., 220030, Minsk
References
1. Anand S., Sowbhagya R., Ansari M. A., Alzohairy M. A., Alomary M. N., Almalik A. I., Ahmad W., Tripathi T., Elderdery A. Y. Polyphenols and their nanoformulations: protective effects against human diseases. Life, 2022, vol. 12, no. 10, p. 1639. https://doi.org/10.3390/life12101639
2. Belova E. A., Krivykh E. A., Kavushevskaya N. S., Bystrevskaya L. K., Zhautikova S. B. Cytoprotective potential in polyphenolic extracts of vaccinium fruits in the Ugra territory in vitro. Vestnik SurGU. Meditsina = Bulletin of Surgut State University. Medicine, 2020, vol. 43, no. 1, pp. 86–93 (in Russian). https://doi.org/10.34822/2304-9448-2020-1-86-93
3. Zou Y., Qian Y., Rong X., Cao K., McClements D. J., Hu K. Encapsulation of quercetin in biopolymer-coated zein nanoparticles: formation, stability, antioxidant capacity, and bioaccessibility. Food Hydrocolloids, 2021, vol. 120, no. 2, pp. 106980. https://doi.org/10.1016/j.foodhyd.2021.106980
4. Kostyuk V., Potapovich A., Albuhaydar A. R., Mayer W., De Luca C., Korkina L. Natural substances for prevention of skin photoaging: screening systems in the development of sunscreen and rejuvenation cosmetics. Rejuvenation Research, 2018, vol. 21, no. 2, pp. 91–101. https://doi.org/10.1089/rej.2017.1931
5. Grgić J., Šelo G., Planinić M., Tišma M., Bucić-Kojić A. Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants, 2020, vol. 9, no. 10, pp. 923. https://doi.org/10.3390/antiox9100923
6. Potapovich A. I., Kostyuk T. V., Ishutina O. V., Shutava T. G., Kostyuk V. A. Effects of native and particulate polyphenols on DNA damage and cell viability after UV-C exposure. Naunyn-Schmiedeberg’s archives of pharmacology, 2023, vol. 396, no. 9, pp. 1923–1930. https://doi.org/10.1007/s00210-023-02443-3
7. Parris N., Dickey L. C. Extraction and solubility characteristics of zein proteins from dry-milled corn. Journal of agricultural and food chemistry, 2001, vol. 49, no. 8, pp. 3757–3760. https://doi.org/10.1021/jf0011790
8. Lawton J. W. Zein: a history of processing and use. Cereal Chemistry, 2002, vol. 79, no. 1, pp. 1–18. https://doi.org/10.1094/CCHEM.2002.79.1.1
9. Corradini E., Curti P.S., Meniqueti A. B., Martins A. F., Rubira A. F., Muniz E. C. Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials. International journal of molecular science, 2014, vol. 15, no. 12, pp. 22438–22470. https://doi.org/10.3390/ijms151222438
10. Pascoli M., de Lima R., Fraceto L. F. Zein nanoparticles and strategies to improve colloidal stability: f mini-review. Frontiers in Chemistry, 2018, vol. 6, pp. 6. https://doi.org/10.3389/fchem.2018.00006
11. Zhou J.-F., Zheng G.-D., Wang W.-J., Yin Z.-P., Chen J.-G., Li J.-E., Zhang Q.-F. Physicochemical properties and bioavailability comparison of two quercetin loading zein nanoparticles with outer shell of caseinate and chitosan. Food Hydrocolloids, 2021, vol. 120, pp. 106959. https://doi.org/10.1016/j.foodhyd.2021.106959
12. Zou Y., Qian Y., Rong X., Cao K., McClements D. J., Hu K. Encapsulation of quercetin in biopolymer-coated zein nanoparticles: formation, stability, antioxidant capacity, and bioaccessibility. Food Hydrocolloids, 2021, vol. 120, pp. 106980. https://doi.org/10.1016/j.foodhyd.2021.106980
13. Wang X., Peng F., Liu F., Xiao Y., Li F., Lei H., Wang J., Li M., Xu H. Zein-pectin composite nanoparticles as an efficient hyperoside delivery system: fabrication, characterization, and in vitro release property. LWT – Food Science and Technology, 2020, vol. 133, pp. 109869. https://doi.org/10.1016/j.lwt.2020.109869
14. Wang T., Li X., Chen L., Li L., Janaswamy S. Carriers based on zein-dextran sulfate sodium binary complex for the sustained delivery of quercetin. Frontiers in Chemistry, 2020, vol. 8, pp. 662. https://doi.org/10.3389/fchem.2020.00662
15. Shi Q., Wang X., Tang X., Zhen N., Wang Y., Lu Z., Zhang H., Liu J., Zhou D., Huang K. In vitro antioxidant and antitumor study of zein/SHA nanoparticles loaded with resveratrol. Food Science & Nutrition, 2021, vol. 9, no. 7, pp. 3530–3537. https://doi.org/10.1002/fsn3.2302
16. Podaralla S., Averineni R., Alqahtani M., Perumal O. Synthesis of novel biodegradable methoxy poly(ethylene glycol)−zein micelles for effective delivery of curcumin. Molecular Pharmaceutics, 2012, vol. 9, no. 9, pp. 2778−2786. https://doi.org/10.1021/mp2006455
17. Rodríguez-Félix F., Del-Toro-Sánchez C. L., Cinco-Moroyoqui F. J., Juárez J., Ruiz-Cruz S., López-Ahumada G. A., Carvajal-Millan E., Castro-Enríquez D. D., Barreras-Urbina C. G., Tapia-Hernández J. A. Preparation and characterization of quercetin-loaded zein nanoparticles by electrospraying and study of in vitro bioavailability. Journal of Food Science, 2019, vol. 84, no. 10, pp. 2883–2897. https://doi.org/10.1111/1750-3841.14803
18. Patel A. R., Heussen P. C. M., Hazekamp J., Drost E., Velikov, K. P. Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium. Food Chemistry, 2012, vol. 133, no. 2, pp. 423–429. https://doi.org/10.1016/j.foodchem.2012.01.054
19. Nunes R., Baião A., Monteiro D., das Neves J., Sarmento B. Zein nanoparticles as low-cost, safe, and effective carriers to improve the oral bioavailability of resveratrol. Drug delivery and translational research, 2020, vol. 10, no. 3, pp. 826–837. https://doi.org/10.1007/s13346-020-00738-z
20. Gagliardi A., Paolino D., Costa N., Fresta M., Cosco D. Zeinvs PLGA-based nanoparticles containing rutin: A comparative investigation. Materials Science & Engineering C, 2021, vol. 118, pp. 111538. https://doi.org/10.1016/j.msec.2020.111538
21. Gagliardi A., Bonacci S., Paolino D., Celia C., Procopio A., Fresta M., Cosco D. Paclitaxel-loaded sodium deoxycholate-stabilized zein nanoparticles: characterization and in vitro cytotoxicity. Heliyon, 2019, vol. 5, pp. e02422. https://doi.org/10.1016/j.heliyon.2019.e02422
22. Alhakamy N. A., Ahmed O. A. A., Aldawsari H. M., Alfaifi M. Y., Eid B. G., Abdel-Naim A. B., Fahmy U. A. Encapsulation of Lovastatin in Zein Nanoparticles Exhibits Enhanced Apoptotic Activity in HepG2 Cells. International journal of molecular science, 2019, vol. 20, pp. 5788. https://doi.org/10.3390/ijms20225788
23. Zhang S., Song W., Wu H., Wang J., Wang Y., Zhang Z., Lv H. Lecithins-Zein nanoparticles for antifungal treatment: Enhancement and prolongation of drug retention in skin with reduced toxicity. International Journal of Pharmaceutics, 2020, vol. 590, pp. 119894. https://doi.org/10.1016/j.ijpharm.2020.119894
24. de Oliveira J. L., Campos E. V. R., Pereira A. E. S., Pasquoto T., Lima R., Grillo R., de Andrade D. J., dos Santos F. A., Fraceto L. F. Zein Nanoparticles as Eco-Friendly Carrier Systems for Botanical Repellents Aiming Sustainable Agriculture. Journal of Agricultural and Food Chemistry, 2018, vol. 66, no. 6, pp. 1330−1340. https://doi.org/10.1021/acs.jafc.7b05552
25. Nakamura Y., Tsuji S., Tonogai Y. Method for Analysis of Tannic Acid and Its Metabolites in Biological Samples: Application to Tannic Acid Metabolism in the Rat. Journal of Agricultural and Food Chemistry, 2003, vol. 51, no. 1, pp. 331–334. https://doi.org/10.1021/jf020847+
26. Re R., Pellegrini A., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 1999, vol. 26, no. 9–10, pp. 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
27. Singh B. R. Basic Aspects of the Technique and Applications of Infrared Spectroscopy of Peptides and Proteins in Infrared Analysis of Peptides and Proteins. ACS Symposium Series, 2000, vol. 750, pp. 2–37. https://doi.org/10.1021/bk2000-0750.ch001
28. Hadavi M., Hasannia S., Faghihi S., Mashayekhi F., Homazadeh H., Mostofi S. B. Zein nanoparticle as a novel BMP6 derived peptide carrier for enhanced osteogenic differentiation of C2C12 cells. Artificial Cells, Nanomedicine, and Biotechnology, 2018, vol. 46, no. 1, pp. 559–567. https://doi.org/10.1080/21691401.2018.143164
29. Huberty W., Tong X., Balamurugan S., Deville K., Russo P. S., Zhang D. Colorful polyelectrolytes: an atom transfer radical polymerization route to fluorescent polystyrene sulfonate. Journal of Fluorescence, 2016, vol. 26, pp. 609–615. https:// doi.org/10.1007/s10895-015-1747-2
30. Heneczkowski M., Kopacz M., Nowak D., Kuzniar A. Infrared spectrum analysis of some flavonoids. Acta Poloniae Pharmaceutica, 2001, vol. 58, no. 6, pp. 415–420. PMID: 12197612
31. Pohjala L., Tammela P. Aggregating behavior of phenolic compounds — a source of false bioassay results. Molecules, 2012, vol. 17, no. 9, pp. 10774–10790. https://doi.org/10.3390/molecules170910774
32. Baxter N. J., Lilley T. H., Haslam E., Williamson M. P. Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry, 1997, vol. 36, no. 18, pp. 5566–5577. https://doi.org/10.1021/bi9700328
33. Zenkevich I. G., Eshchenko A. Y., Makarova S. V., Vitenberg A. G., Dobryakov Y. G., Utsal V. A. Identification of the products of oxidation of quercetin by air oxygen at ambient temperature. Molecules, 2007, vol. 12, no. 3, pp. 654–72. https://doi.org/10.3390/12030654
34. Chebotarev A. N., Snigur D. V. Study of the AcidBase Properties of Quercetin in Aqueous Solutions by Color Measurements. Journal Analytical Chemistry, 2015, vol. 70, no. 1, pp. 55–59. https://doi.org/10.1134/S1061934815010062
35. Santos J., Trujillo-Cayado L. A.; Carrillo F., López-Castejón M. L., Alfaro-Rodríguez M. C. Relation between Droplet Size Distributions and Physical Stability for Zein Microfluidized Emulsions. Polymers, 2022, vol. 14, no. 11, pp. 2195. https:// doi.org/10.3390/polym14112195
36. Wisudyaningsih B., Sallama S., Siswodihardjo S., Setyawan D. The Effect of pH and Cocrystal Quercetin-Isonicotinamide on Quercetin Solubility and its Thermodynamic. Research Journal of Pharmacy and Technology, 2021, vol. 14, no. 9, pp. 4657–4661. https://doi.org/10.52711/0974-360X.2021.00809
37. Zhang B., Lung P. S., Zhao S., Chu Z., Chrzanowski W., Li Q. Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells. Scientific Reports, 2017, vol. 7, pp. 7315. https://doi.org/10.1038/s41598-017-07588-9
38. Kawakami T., Miyajima A., Komoriya K., Kato R., Isama K. Effect of secondary particle size of nickel oxide on nanoparticles on cytotoxicity in A549 cells. Journal of Toxicological Sciences, 2022, vol. 47, no. 4, pp. 151–157. https://doi.org/10.2131/jts.47.151
39. Soto K., Garza K. M., Murr L. E. Cytotoxic effects of aggregated nanomaterials. Acta Biomaterialia, 2007, vol. 3, no. 3, pp. 351–358. https://doi.org/10.1016/j.actbio.2006.11.004
40. Kostyuk V., Potapovich A., Suhan T., De Luca C., Pressi G., Dal Toso R., Korkina L. Plant polyphenols against UV-C-induced cellular death. Planta medica. 2008, vol. 74, no. 5, pp. 509–514. https://doi.org/10.1055/s-2008-1074499