Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Combined systems of polymerase chain reaction and a time-resolved fluorescence immunoassay or membrane immunochromatography for quantitative determination of Salmonella enterica bacterial DNA

https://doi.org/10.29235/1561-8331-2024-60-4-314-325

Abstract

Four model bioanalytical systems specific for Salmonella enterica have been developed and studied, in which a polymerase chain reaction (PCR) produced a DNA amplicon containing biotin and fluorescein residues. This enabled to immobilize the amplicon on a functionalized solid phase and to label it biospecifically with europium chelate in microplates or gold nanoparticles on a chromatographic membrane. Quantitative detection of the modified DNA was carried out in immunoassay systems by measuring the Eu3+ time-resolved fluorescence (dissociation-enhanced lanthanide fluorescence immunoassay, DELFIA) or by photometry of the colored zone on the chromatographic strip (LFA). Three pairs of primers were developed and examined to obtain selected fragments of the invA gene, which is present in the genomes of all pathogenic Salmonella enterica. The fragments proved to be suitable for the test systems. In the microplate DELFIA system, the concentration range of DNA amplicon quantification was found to be 0.01–10.0 nM, and a detection limit was 2 pM. The limit of DNA visual detection in LFA was 0.05 nM. The possibility of testing the amplicons without additional isolation of pure DNA from the reaction mixture was demonstrated. The high specificity of the developed bioanalytical systems for the detection of various Salmonella enterica serotypes was demonstrated.

About the Authors

T. S. Serchenya
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Serchenya Tatyana S. – Ph. D. (Chemistry), Associate Professor, Leading Researcher

5/2, Academician V. F. Kuprevich Str., 220084, Minsk



K. U. Akhremchuk
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus

Akhremchuk Katsiaryna U. – Ph. D. (Biology), Researcher

2, Academician V. F. Kuprevich Str., 220084, Minsk



L. N. Valentovich
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus

Valentovich Leonid N. – Ph. D. (Biology), Head of Laboratory

2, Academician V. F. Kuprevich Str., 220084, Minsk



V. S. Lapina
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Lapina Victoryia S. – Junior Researcher

5/2, Academician V. F. Kuprevich Str., 220084, Minsk



O. V. Sviridov
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Sviridov Oleg V. – D. Sc. (Chemistry), Professor, Head of Laboratory

5/2, Academician V. F. Kuprevich Str., 220084, Minsk



References

1. D’Aoust J. Y., Sewell A. M., Warburton D. W. A comparison of standard cultural methods for the detection of foodborne Salmonella. International Journal of Food Microbiology, 1992, no. 16, vol. 1, pp. 41–50. https://doi.org/10.1016/0168-1605(92)90124-l

2. Sokolov D. M., Sokolov M. S. Rapid methods for the genus Salmonella bacteria detection. Voprosy pitaniya = Problems of Nutrition, 2013, no. 1, pp. 33–40 (in Russian).

3. Choi D., Tsang R. S., Ng M. H. Sandwich capture ELISA by a murine monoclonal antibody against a genus-specific LPS epitope for the detection of different common serotypes of Salmonellas. Journal of Applied Bacteriology, 1992, vol. 72, no. 2, pp. 134–138. https://doi.org/10.1111/j.1365-2672.1992.tb01814.x

4. Wu X., Wang W., Liu L., Kuang H., Xu C. Monoclonal antibody-based cross-reactive sandwich ELISA for the detection of Salmonella spp. in milk samples. Analytical Methods, 2015, vol. 7, no. 21, pp. 9047–9053. https://doi.org/10.1039/C5AY01923K

5. Wang W., Liu L., Song S., Xu L., Kuang H., Zhu J., Xu C. Gold nanoparticle-based strip sensor for multiple detection of twelve Salmonella strains with a genus-specific lipopolysaccharide antibody. Science China Materials, 2016, vol. 59, no. 8, pp. 665–674. https://doi.org/10.1007/s40843-016-5077-0

6. Rajapaksha P., Elbourne A., Gangadoo S., Brown, R., Cozzolino D., Chapman J. A Review of methods for the detection of pathogenic microorganisms. Analyst, 2019, vol. 144, no. 2, pp. 396–411. https://doi.org/10.1039/c8an01488d

7. Luk J. M., Kongmuang U., Tsang R. S., Lindberg A. A. An enzyme-linked immunosorbent assay to detect PCR products of the rfbS gene from serogroup D Salmonellae: a rapid screening prototype. Journal of Clinical Microbiology, 1997, vol. 35, no. 3, pp. 714–718. https:// doi.org/10.1128/jcm.35.3.714-718.1997.

8. Musiani M., Venturoli S., Gallinella G., Zerbini M. Qualitative PCR-ELISA protocol for the detection and typing of viral genomes. Nature Protocols, 2007, vol. 2, no. 10, pp. 2502–2510. https://doi.org/10.1038/nprot.2007.311

9. Liu H.-B., Zang Y.-X., Du X.-J., Li P., Wang S. Development of an isothermal amplification-based assay for the rapid visual detection of Salmonella bacteria. Journal of Dairy Science, 2017, vol. 100, no. 9, pp. 7016–7025. https://doi.org/10.3168/jds.2017-12566

10. Hu J., Huang R., Sun Y., Wei X., Wang Y., Jiang C., Geng Y., Sun X., Jing J., Gao H., Wang Z., Dong C. Sensitive and rapid visual detection of Salmonella Typhimurium in milk based on recombinase polymerase amplification with lateral flow dipsticks. Journal of Microbiological Methods, 2019, vol. 158, pp. 25–32. https://doi.org/10.1016/j.mimet.2019.01.018

11. Hemmilä I., Dakubu S., Mukkala V. M., Siitari H., Lövgren T. Europium as a label in time-resolved immunofluorometric assays. Analytical Biochemistry, 1984, vol. 137, no. 2, pp. 335–343. https://doi.org/10.1016/0003-2697(84)90095-2

12. Garbuz O. S., Sviridov O. V. Lanthanide immunofluorimetric assay: scientific background and technical principles. ARSmedica, 2011, no. 13, pp. 51–61 (in Russian).

13. Kuprienko O. S., Dubovskaya L. V., Shabunya P. S., Fatyhova S. A., Sviridov O. V. Functionalized metal chelates based on diethylenetriaminetetetraacetic acids for chemical modification of proteins and small biomolecules. Bioorganicheskaja himiya. = Bioorganic Chemistry, 2015, vol. 41, no. 6, pp. 675–685 (in Russian). https://doi.org/10.7868/S013234231506007X

14. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Physical Science, 1973, vol. 241, no. 105, pp. 20–22. https://doi.org/10.1038/physci241020a0

15. Byzova N. A., Serchenya T. S., Vashkevich I. I., Zherdev A. V., Sviridov O. V., Dzantiev B. B. Lateral flow immunoassay for rapid qualitative and quantitative control of the veterinary drug bacitracin in milk. Microchemical Journal, 2020, vol. 156, article 104884. https:// doi.org/10.1016/j.microc.2020.104884

16. Hermanson G. T. Bioconjugate Techniques. Elsevier, 1996. 814 p. https://doi.org/10.1016/0890-8508(92)90002-f

17. Galán J. E., Curtiss R. Cloning and molecular characterization of genes whose products allow Salmonella Typhimurium to penetrate tissue culture cells. Proceedings of the National Academy of Sciences of the United States of America, 1989, vol. 86, no. 16, pp. 6383–6387. https://doi.org/10.1073/pnas.86.16.6383

18. Rahn K., De Grandis S. A., Clarke R. C., McEwen S. A., Galán J. E., Ginocchio C., Curtiss R., Gyles C. L. Amplification of an invA gene sequence of Salmonella Typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Molecular and Cellular Probes, 1992, vol. 6, no. 4, pp. 271–279. https://doi.org/10.1016/0890-8508(92)90002-f

19. Ivanov A. V., Safenkova I. V., Zherdev A. V., Dzantiev B. B. Nucleic acid lateral flow assay with recombinase polymerase amplification: solutions for high-sensitive detection of RNA virus. Talanta, 2020, vol. 210, article 120616. https://doi.org/10.1016/j.talanta.2019.120616

20. Moon Y.-J., Lee S.-Y., Oh S.-W. A review of isothermal amplification methods and food-origin inhibitors against detecting foodborne pathogens. Foods, 2022, vol. 11, no. 3, pp. 322–337. https://doi.org/10.3390/foods11030322

21. Wang Z., Zhao J., Xu X., Guo L., Xu L., Sun M., Hu S., Kuang H., Xu C., Li A. An Overview for the nanoparticles-based quantitative lateral flow assay. Small methods, 2022, vol. 6, no. 1, article 2101143. https://doi.org/10.1002/smtd.202101143


Review

Views: 749


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)