Dextran phosphate stabilized selenium nanoparticles for creating a prolonged-release form of doxorubicin
https://doi.org/10.29235/1561-8331-2025-61-1-30-40
Abstract
Nanobiotechnology is an actively developing field of science, which finds application in cancer therapy, molecular diagnostics and molecular imaging. In this work, selenium nanoparticles were successfully obtained by chemical reduction of selenite ions with ascorbic acid in dextran phosphate (DP) solutions, which was used as a stabilizer. It has been found that dextran phosphate coated nanoparticles are stable during storage for 3 days. Sorption of the antitumor substance doxorubicin was studied in the concentration range from 0.1 mg/ml to 1 mg/ml. A significant prolongation of cytostatic release from stabilized nanoparticles was shown. Selenium nanoparticles coated with water-soluble DP can be used to create broad-spectrum drugs, in particular, antitumor drugs that compensate for selenium deficiency in the body.
About the Authors
U E. AharodnikauBelarus
Aharodnikau Uladzislau E. – Postgraduate Student, Junior Researcher
14, Leningrad- skaya Str., 220030, Minsk
A. V. Yedchyk
Belarus
Yedchyk Aliaksandra V. – Technician
1, Kurchatov Str., 220045, Minsk
Yu. I. Pristromova
Belarus
Pristromova Yulia I. – Postgraduate Student, Junior Researcher
14, Leningrad- skaya Str., 220030, Minsk
A. V. Baranouskaya
Belarus
Baranouskaya Anastasiya V. – Technician
1, Kurchatov Str., 220045, Minsk
A. G. Karcheuskaya
Belarus
Karcheuskaya Anhelina G. – Technician
1, Kurchatov Str., 220045, Minsk
Kh. Yunusov
Azerbaijan
Yunusov Khaydar – D. Sc. (Engineering), Senior Researcher
A. Kadiry Str., 7b, 100128, Tashkent
A. Sarymsakov
Azerbaijan
Sarymsakov Abdushkur – D. Sc. (Engineering), Professor
A. Kadiry Str., 7b, 100128, Tashkent
S. Rashidova
Azerbaijan
Rashidova Saiora – Academician of The Academy of Sciences of the Republic of Uzbekistan, Director
A. Kadiry Str., 7b, 100128, Tashkent
V. А. Alinovskaya
Belarus
Alinovskaya Valentina А. – Researcher
14, Leningradskaya Str., 220030, Minsk
P. M. Bychkovsky
Belarus
Bychkovsky Pavel M. – Ph. D. (Chemistry), Associate Professor, Director
1, Kurchatov Str., 220045, Minsk
T. L. Yurkshtovich
Belarus
Yurkshtovich Tatiana L. – Ph. D (Chemistry), Associate Professor, Head of the Laboratory
14, Leningradskaya Str., 220030, Minsk
References
1. Lee C. S., Kim H., Yu J., Yu S. H., Ban S., Oh S., Jeong D., Im J., Baek M. J., Kim T. H. Doxorubicin-loaded oligonucleotide conjugated gold nanoparticles: A promising in vivo drug delivery system for colorectal cancer therapy. European Journal of Medicinal Chemistry, 2017, vol. 142, pp. 416–423. https://doi.org/10.1016/j.ejmech.2017.08.063
2. Li Y., Lin Z., Zhao M., Xu T., Wang C., Xia H., Wang H., Zhu B. Multifunctional selenium nanoparticles as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells. International Journal of Nanomedicine, 2016, vol. 11, pp. 3065–3076. https://doi.org/10.2147/IJN.S109822
3. Xia Y., Xiao M., Zhao M., Xu T., Guo M., Wang C., Li Y., Zhu B., Liu H. Doxorubicin-loaded functionalized selenium nanoparticles for enhanced antitumor efficacy in cervical carcinoma therapy. Materials Science and Engineering: C, 2020, vol. 106, p. 110100. https://doi.org/10.1016/j.msec.2019.110100
4. Ramamurthy C. H., Sampath K. S., Arunkumar P., Kumar M. S., Sujatha V., Premkumar K., Thirunavukkarasu C. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess and Biosystems Engineering, 2013, vol. 36, no. 8, pp. 1131–1139. https://doi.org/10.1007/s00449-012-0867-1
5. Solomevich S. O., Aharodnikau U. E., Dmitruk E. I., Nikishau P. A., Bychkovsky P. M., Salamevich D. A., Jiang G., Pavlov K. I., Sun Y., Yurkshtovich T. L. Chitosan – dextran phosphate carbamate hydrogels for locally controlled co-delivery of doxorubicin and indomethacin: From computation study to in vivo pharmacokinetics. International Journal of Biological Macromolecules, 2023, vol. 228, pp. 273–285. https://doi.org/10.1016/j.ijbiomac.2022.12.243
6. Tacar O., Sriamornsak P., Dass C. R. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. Journal of Pharmacy and Pharmacology, 2013, vol. 65, no. 2, pp. 157–170. https://doi.org/10.1111/j.2042-7158.2012.01567.x
7. Ozben T. Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Letters, vol. 580, no. 12, pp. 2903–2909. https://doi.org/10.1016/j.febslet.2006.02.020
8. Kumari M., Purohit M. P., Patnaik S., Shukla Y., Kumar P., Gupta K. C. Curcumin loaded selenium nanoparticles synergize the anticancer potential of doxorubicin contained in self-assembled, cell receptor targeted nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2018, vol. 130, pp. 185–199. https://doi.org/10.1016/j.ejpb.2018.06.030
9. Yunusov K. E., Sarymsakov A. A., Turakulov F. M., Rashidova S. S., Yurkshtovich T. L., Kokhan A. V., Yurkshtovich N. K., Alinovskaya V. A., Bychkovskii P. M., Golub N. V., Solomevich S. O. Synthesis of selenium nanoparticles stabilized with sodium carboxymethylcellulose for preparation of a long-acting form of prospidine. Russian Journal of Applied Chemistry, 2021, vol. 94, no. 9, pp. 1259–1266. https://doi.org/10.1134/s1070427221090081
10. Solomevich S. O., Bychkovsky P. M., Yurkshtovich T. L., Golub N. V., Mirchuk P. Y., Revtovich M. Y., Shmak A. I. Biodegradable pH-sensitive prospidine-loaded dextran phosphate based hydrogels for local tumor therapy. Carbohydrate Polymers, 2019, vol. 226, p. 115308. https://doi.org/10.1016/j.carbpol.2019.115308
11. Solomevich S. O., Cherkasova A. V., Salamevich D. A., Aharodnikau U. E., Bychkovsky P. M., Yurkshtovich T. L. Millimeter-sized chitosan/dextran phosphate capsules and calcium/dextran phosphate beads for regulating prospidine release. Materials Letters, 2021, vol. 293, p. 129720. https://doi.org/10.1016/j.matlet.2021.129720
12. Solomevich S. O., Dmitruk E. I., Bychkovsky P. M., Salamevich D. A., Kuchuk S. V., Yurkshtovich T. L. Biodegradable polyelectrolyte complexes of chitosan and partially crosslinked dextran phosphate with potential for biomedical applications. International Journal of Biological Macromolecules, 2021, vol. 169, pp. 500–512. https://doi.org/10.1016/j.ijbiomac.2020.12.200
13. Bezerra R. D., Morais A. I., Osajima J. A., Nunes L. C., Silva Filho E. C. Development of new phosphated cellulose for application as an efficient biomaterial for the incorporation/release of amitriptyline. International Journal of Biological Macromolecules, 2016, vol. 86, pp. 362–375. https://doi.org/10.1016/j.ijbiomac.2016.01.063
14. Solomevich S. O., Dmitruk E. I., Aharodnikau U. E., Salamevich D. A., Bychkovsky P. M., Golub N. V., Yurkshtovich T. L. Characterization of H3PO4/HNO3–NANO2 oxidized bacterial cellulose and its usage as a carrier for the controlled release of cephalexin. Cellulose, 2021, vol. 28, no. 14, pp. 9425–9439. https://doi.org/10.1007/s10570-021-04130-z
15. Bisht N., Phalswal P., Khanna P. K. Selenium nanoparticles: a review on synthesis and biomedical applications. Materials Advances, 2022, vol. 3, no. 3, pp. 1415–1431. https://doi.org/10.1039/D1MA00639H
16. Petrov A. V. High intensity ultrasound as a tool to influence nanostructure systems in biomedical technologies. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta = Transactions TSTU, 2018, vol. 24, no. 4, pp. 727–738 (in Russian). https://doi.org/10.17277/vestnik.2018.04.p
17. Cai W., Hu T., Bakry A. M., Zheng Zh., Xiao Y., Huang Q. Effect of ultrasound on size, morphology, stability and antioxidant activity of selenium nanoparticles dispersed by a hyperbranched polysaccharide from Lignosus rhinocerotis. Ultrasonics Sonochemistry, 2018, vol. 42, pp. 823–831. https://doi.org/10.1016/j.ultsonch.2017.12.022
18. Zou Q., Pu Y., Han Zh., Fu N., Li S., Liu M., Huang L., A. Lu, Mo J., Chen Sh. Ultrasonic degradation of aqueous dextran: effect of initial molecular weight and concentration. Carbohydrate Polymers, 2012, vol. 90, no. 1, pp. 447–451. https://doi.org/10.1016/j.carbpol.2012.05.064
19. Beliatskaya A. V., Kashlikova I. M., Krasnyuk (Jr.) I. I., Krasnyuk I. I., Stepanova O. I., Vorob`yev A. N. Development of composition and technologies of nitrofurane derivative gel. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Khimiya. Biologiya. Farmatsiya = Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy, 2020, no. 1, pp. 50–58 (in Russian).
20. Solomevich S. O., Dmitruk E. I., Bychkovsky P. M., Nebytov A. E., Yurkshtovich T. L., Golub N. V. Fabrication of oxidized bacterial cellulose by nitrogen dioxide in chloroform/cyclohexane as a highly loaded drug carrier for sustained release of cisplatin. Carbohydrate polymers, 2020, vol. 248, p. 116745. https://doi.org/10.1016/j.carbpol.2020.116745