Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Influence of carbon support action on the deposited palladium electronic and structural characteristics

https://doi.org/10.29235/1561-8331-2025-61-1-46-55

Abstract

The structural characteristics and electronic state of palladium deposited on carbon fiber materials (Busofit, Carbopon) and the carbon composite Sibunit were studied. The study of supports and Pd/C composites by modern instrumental methods (AES-ICP, TEM, EXAFS- and X-ray photoelectron spectroscopy) showed two nanosized phases of the metal component in all the 1% Pd/C samples studied: the oxidized surface phase of PdO and the clusters of metallic palladium with average particle size of 1.7, 1.9 and 2.2 nm, for Sibunit, Busofit and Carbopon, respectively. Differences in the values of the Pd2+/Pd0 surface ratio for the systems under investigation can be related to the different quantity and type of functional groups on the surface of carbon materials, as well as to their different specific surface area.

About the Authors

S. G. Khaminets
Institute of physical organic chemistry of the National Academy of Sciences of Belarus
Belarus

Khaminets Siarhei G. – Ph. D. (Chemistry), Researcher

13, Surganov Str., 220072, Minsk



S. V. Matveichuk
Institute of physical organic chemistry of the National Academy of Sciences of Belarus
Belarus

Matveichuk Siarhei V. – Ph. D. (Chemistry), Leading Researcher

13, Surganov Str., 220072, Minsk



L. Yu. Tychinskaya
Institute of physical organic chemistry of the National Academy of Sciences of Belarus
Belarus

Tychinskaya Lyudmila Yu. – Ph. D. (Chemistry), Head of the Laboratory

13, Surganov Str., 220072, Minsk



References

1. Toebes M. L., Dillen J. A., van de Jong K. P. Synthesis of supported palladium catalysts. Journal of Molecular Catalysis A: Chemical, 2001, vol. 173, no. 1–2, pp. 75–98. https://doi.org/10.1016/s1381-1169(01)00146-7

2. Cabiac A., Cacciaguerra T., Trens P., Durand R., Delhay G., Medevielle A., Plee D., Coq B. Influence of textural properties of activated carbons on Pd/carbon catalysts synthesis for cinnamaldehyde hydrogenation. Applied Catalysis A, 2008, vol. 340, pp. 229–235. https://doi.org/10.1016/j.apcata.2008.02.018

3. Yermakov Yu. I., Surovikin V. F., Plaksin G. V. New carbon material as support for catalysts, Reaction Kinetics and Catalysis Letters, 1987, vol. 33, no. 2, pp. 435–440. https://doi.org/10.1007/bf02128102

4. Surovikin V. F., Surovikin Yu. V., Zehanovitch M. C. New fields in the technology for manufacturing carbon-carbon materials. Application of carbon-carbon materials. Russian Journal of General Chemistry, 2007, vol. 77, no. 12, 2301–2310 (in Russian). https://doi.org/10.1134/s1070363207120353

5. Semikolenov V. A. Designing finely dispersed palladium catalysts on carbon supports. Russian Journal of Applied Chemistry, 1997, vol. 70, no. 5, pp. 748–758 (in Russian).

6. Lisicyn A. S., Parmon V. N. Duplyskin V. K., Liholobov V. A. Modern problems and prospects for the development of research in the field of supported palladium catalysts. Russian Chemical Journal, 2006, vol. 50, no. 4, pp. 140–150 (in Russian).

7. Matatov-Meytal U., Sheintuch M. The relation between surface composition of Pd-Cu/ACC catalysts prepared by selective deposition and their denitrification behavior. Catalysis Communications, 2009, vol. 10, no. 8, pp. 1137–1141. https://doi.org/10.1016/j.catcom.2008.10.038

8. Joannet E., Horny C., Kiwi-Minsker L., Renken A. Palladium supported on filamentous active carbon as effective catalyst for liquid-phase hydrogenation of 2-butyne-1,4-diol to 2-butene-1,4-diol. Chemical Engineering Science, 2002, vol. 57, no. 16, pp. 3453–3460. https://doi.org/10.1016/s0009-2509(02)00215-4

9. Besson M., Gallezot P., Perrard A., Pinel C. Active carbons as catalysts for liquid phase reactions. Catalysis Today, 2005, vol. 102–103, pp. 160–165. https://doi.org/10.1016/j.cattod.2005.02.037

10. Bulushev D. A., Kiwi L., Yuranov I., Suvorova E. I., Buffat Ph., Renken A. Structured Au/Fe2O3/C catalysts for lowtemperature CO oxidation. Journal of Catalysis, 2002, vol. 210, no. 1, pp. 149–159. https://doi.org/10.1006/jcat.2002.3632

11. Bulushev D. A., Yuranov I., Suvorova E. I., Buffat Ph. A., Kiwi-Minsker L. Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation. Journal of Catalysis, 2004, vol. 224, no. 1, pp. 8–17. https://doi.org/10.1016/j.jcat.2004.02.014

12. Khaminets S. G., Potapova L. L., Radkevich V. Z., Kochubey D. I., Egiazarov Yu. G. Effective platinum catalysts for low-temperature oxidation of CO. Russian Journal of Physical Chemistry A, vol. 84, no. 4, pp. 561–565 (in Russian). https://doi.org/10.1134/s0036024410040072

13. Figueiredo J. L., Pereira M. F. R., Freitas M. M. A., Orfao J. J. M. Modification of the surface chemistry of activated carbons. Carbon, 1999, vol. 37, pp. 1379–1389. https://doi.org/10.1016/s0008-6223(98)00333-9

14. Ryndin A. Yu., Stenin M. V., Boronin A. I., Bukhtiyarov V. I., Zaikovskii V. I. Effect of Pd/C dispersion on its catalytic properties in acetylene and vinylacetylene hydrogenation. Applied Catalysis, 1989, vol. 54, no. 1, pp. 277–288. https://doi.org/10.1016/S0166-9834(00)82370-2

15. Mojet B. L., Hoogenraad M. S., van Dillen A. J., Geus J. W., Koningsberger D. C. Coordination of palladium on carbon fibrils as determined by XAFS spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1997, vol. 93, no. 24, pp. 4271–4280. https://doi.org/10.1039/a704989g

16. Boehm H. P. Chemical identification of surface groups. Advances in Catalysis, 1966, vol. 16, pp. 179–274. https://doi.org/10.1016/s0360-0564(08)60354-5

17. Boehm H. P. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 1994, vol. 32, pp. 759–769. https://doi.org/10.1016/0008-6223(94)90031-0

18. Kochubey D. I. Catalysis. Questions of theory and practice. Novosibirsk, Nauka Publ., 1992. 145 p. (in Russian).

19. Klementev K. V. Extraction of the fine structure from X-ray absorption spectra. Journal of Physics D: Applied Physics, 2001, vol. 34, pp. 209–217. https://doi.org/10.1088/0022-3727/34/2/309

20. Scofield J. H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. Journal of Electron Spectroscopy and Related Phenomena, 1976, vol. 8, iss. 2, pp. 129–137. https://doi.org/10.1016/0368-2048(76)80015-1

21. Rodriguez-Reinoso F. The role of carbon materials in heterogeneous catalysis. Carbon, 1998, vol. 36, no. 3, pp. 159–175. https://doi.org/10.1016/s0008-6223(97)00173-5

22. Moudler J., Stickle W., Sobol P., Bomben K. Handbook of X-ray photoelectron spectroscopy. Minnesota, Perkin-Elmer Corp.: Eden Priarie, 1992. 260 p.

23. Militello M. C., Simko S. Elemental palladium by XPS. Surface Science Spectra, 1997, vol. 3, pp. 387–394. https://doi.org/10.1116/1.1247783

24. Brun M., Berthet A., Bertolini J.C., XPS, AES and Auger parameter of Pd and PdO. Journal of Electron Spectroscopy and Related Phenomena, 1999, vol. 104, pp. 55–60. https://doi.org/10.1016/S0368-2048(98)00312-0

25. Peuckert M. XPS study on surface and bulk palladium oxide, its thermal stability, and a comparison with other noble metal oxides. Journal of Physical Chemistry, 1985, vol. 89, no. 12, pp. 2481–2486. https://doi.org/10.1021/j100258a012

26. Militello M. C., Simko S., Palladium Oxide (PdO) by XPS. Surface Science Spectra, 1997, vol. 3, iss. 4, pp. 395–401. https:// doi.org/10.1116/1.1247784

27. Pillo Th., Zimmermann R., Steiner P., Hufner S., The electronic structure of PdO found by photoemission (UPS and XPS) and inverse photoemission (BIS). Journal of Physics: Condensed Matter, 1997, vol. 9, pp. 3987–3999. https://doi.org/10.1088/09538984/9/19/018

28. Lundgren E., Kresse G., Klein C., Borg M., Andersen J. N., De Santis M., Gauthier Y., Konvicka C., Schmid M., Varga P., Two-Dimensional Oxide on Pd (111). Physical Review Letters, 2002, vol. 88, iss. 24, pp. 246–258. https://doi.org/10.1103/PhysRevLett.88.246103

29. Todorova M., Lundgren E., Blum V., Mikkelsen A., Gray S., Gustafson J., Borg M., Rogal J., Reuter K., Andersen J. N., Scheffler M. The Pd (100)–(5 × 5) R27-O surface oxide revisited. Surface Science, 2003, vol. 541, iss. 1–3, pp. 101–112. https://doi.org/10.1016/S0039-6028(03)00873-2

30. Radkevich V. Z., Senko T. L., Wilson K., Grishenko L. M., Zaderko A. N., Diyuk V. Y., The influence of surface functionalisation of activated carbon on palladium dispersion and catalytic activity in hydrogen oxidation. Applied Catalysis A: General, 2008, vol. 335, no. 2, pp. 241–251. https://doi.org/10.1016/j.apcata.2007.11.029

31. Gomez-Sainero L.M., Seoane X.L., Fierro J.L.G., Arcoya A., Liquid-phase hydrodechlorination of CCl4 to CHCl3 on Pd/ Carbon catalysts: nature and role of pd active species. Journal of Catalysis, 2002, vol. 209, pp. 279–288. https://doi.org/10.1006/JCAT.2002.3655

32. Zheng X., Zhang S., Xu J., Wei K. Effect of thermal and oxidative treatments of activated carbon on its surface structure and suitability as a support for barium-promoted ruthenium in ammonia synthesis catalysts. Carbon, 2002, vol. 40, pp. 2597–2603. https://doi.org/10.1016/s0008-6223(02)00167-7


Review

Views: 150


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)