Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Synthesis of atophane-containing benzocyclopentaquinolines, benzacridines and bisbenzacridines

https://doi.org/10.29235/1561-8331-2025-61-1-65-72

Abstract

Atophane-containing benzocyclopentaquinolines and benzacridines were obtained by the reaction of cascade three-component condensation of atophane-containing esters of substituted benzaldehydes, 1.3-cycloalkyldiketones and 2-naphthylamine with a yield of 60−88 %. Atophane-containing bisbenzacridines were synthesized by a similar technique using 1.5-diaminonaphthalene with a yield of 50−80 %.

About the Authors

E. A. Dikusar
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Dikusar Evgenij A. – Ph. D. (Chemistry), Senior Researcher

13, Surganov Str., 220072, Minsk



E. A. Akishina
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Akishina Ekaterina A. – Researcher

13, Surganov Str., 220072, Minsk



S. S. Koval’skaya
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Koval’skaya Svetlana S. – Ph. D. (Chemistry), Senior Researcher

13, Surganov Str., 220072, Minsk



S. G. Stepin
Vitebsk State Order of Peoples’ Friendship Medical University
Belarus

Stepin Svjatoslav G. – Ph. D. (Chemistry), Associate Professor, Head of the Department

17, Frunze Ave., 210023, Vitebsk



V. I. Potkin
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Potkin Vladimir I. – Academician, Dr. Sc. (Chemistry), Professor, Head of the Laboratory

13, Surganov Str., 220072, Minsk



References

1. Dikusar Е. А., Akishina E. A., Stepin S. G., Filippovich L. N., Bogdanova N. V., Shahab S. N., Potkin V. I. Novel derivatives of atophan (2-phenylquinoline-4-carboxic acid). Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnyh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2024, vol. 60, no. 1, pp. 27–35 (in Russian). https://doi.org/10.29235/1561-8331-2024-60-1-27-35

2. Panchal N. B., Vaghela V. M. From Molecules to Medicine: The Remarkable Pharmacological Odyssey of Quinoline and Its Derivatives. Oriental Journal of Chemistry, 2023, vol. 39, no. 3, pp. 546−567. https://doi.org/10.13005/ojc/390303

3. Afzal O., Kumar S., Haider M. R., Ali M. R., Kumar R., Jaggi M., Bawa S. A review on anticancer potential of bioactive heterocycle quinoline. European Journal of Medicinal Chemistry, 2015, vol. 97, pp. 871–910. https://doi.org/10.1016/j.ejmech.2014.07.044

4. Ilakiyalakshmi M., Arumugam N. A. Review on Recent Development of Quinoline for Anticancer Activities. Arabian Journal of Chemistry, 2022, vol. 15, p. 11104168. https://doi.org/10.1016/J.ARABJC.2022.104168

5. Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opinion on Drug Discowery, 2017, vol. 12, no. 6, pp. 1319357. https://doi.org/10.1080/17460441.2017.1319357

6. Ajani O. O., Iyaye K. T., Ademosun O. T. Recent advances in chemistry and therapeutic potential of functionalized quinolone motifs – a review. RSC Advances, 2022, vol. 12, pp. 18594. https://doi.org/10.1039/d2ra02896d

7. Kaur, K., Kumar N., Singh J. V., Bedi P. M. S., Singh H. Recent Development of Quinoline Derivatives as Anticancer Agents: 2015–2022. Interdisciplinary Cancer Research. Springer, Cham., 2023. https://doi.org/10.1007/16833_2023_125

8. Snehi V., Verma H., Saha S., Kumar S., Pathak D. An Extensive Review on Biological Interest of Quinoline and Its Analogues. International Journal of Science and Healthcare Research, 2023, vol. 8, no. 1, pp. 45−66. https://doi.org/10.52403/ijshr.20230105

9. Patel A., Patel S., Mehta M., Patel Y., Patel R., Shan D., Patel D., Shan S., Patel M., Patel S., Solanki N., Bambharoliya T., Patel S., Nagani A., Patel H., Vaghasiya J., Shah H., Prajapati B., Rathod M., Bhimani B., Patel R., Bhavsar V., Rakholiya B., Patel M., Patel P. A review on synthetic investigation for quinolone – recent green approaches. Green Chemistry Letters and Reviews, 2022, vol. 15, no. 2, pp. 2064194. https://doi.org/10.1080/17518253.2022.2064194

10. Man R.-J., Jeelani N., Zhou C., Yang Y.-S. Recent progress in the development of quinoline derivatives for the exploitation of anti-cancer agents. Anti-Cancer Agents in Medicinal Chemistry, 2020, vol. 21, no. 7, pp. 825−838. https://doi.org/10.2174/1871520620666200516150345

11. Sharma V., Mehta D. K., Das R. Synthetic Methods of Quinoline Derivatives as Potent Anticancer Agents. Mini-Reviews in Medicinal Chemistry, 2017, vol. 17, no. 16, pp. 1557−1572. https://doi.org/10.2174/1389557517666170510104954

12. Bumagin N. A., Potkin V. I. Functionalized isoxazole and isothiazole ligands: design, synthesis, complexes with palladium, homogeneous and heterogeneous catalysis in aqueous media. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnyh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical Series, 2016, no. 2, pp. 321−332 (in Russian).


Review

Views: 146


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)