Физико-химические свойства новых производных цианиновых красителей в составе конъюгатов с ДНК
https://doi.org/10.29235/1561-8331-2025-61-2-95-104
Анатацыя
Цианиновые красители – один из наиболее часто используемых классов флуоресцентных красителей. Все Cy5 флуоресцируют на длине волны около 660 нм, а Cy7 – в ближнем инфракрасном диапазоне длин волн (700–900 нм), что делает их предпочтительными для биологических исследований, так как в этой области почти отсутствует фоновая флуоресценция клеток. Интенсивность флуоресценции цианиновых красителей часто изменяется после конъюгации с биомолекулами, в том числе с нуклеиновыми кислотами. Кроме того, она может существенно изменяться в результате образования дуплекса модифицированной красителем одноцепочечной ДНК с комплементарной последовательностью. Исследованы физико-химические свойства ряда производных красителей Cy5 и Cy7 с заместителями разной длины в различных положениях молекул в составе конъюгатов с одноцепочечной и двухцепочечной ДНК.
Аб аўтарах
Ф. ФаньБеларусь
В. Поведайло
Беларусь
А. Кадуцкий
Беларусь
Г. Малеев
Расія
В. Шманай
Беларусь
Спіс літаратуры
1. Temperature dependence of interaction between double stranded DNA and Cy3 or Cy5 / X. Li, Y. Yin, X. Yang [et al.] // Chemical Physics Letters. – 2011. – Vol. 513, № 4–6. – Р. 271–275. https://doi.org/10.1016/j.cplett.2011.08.017
2. Symmetric meso-chloro-substituted pentamethine cyanine dyes containing benzothiazolyl/benzoselenazolyl chromophores novel synthetic approach and studies on photophysical properties upon interaction with bio-objects / A. Kurutos, O. Ryzhova, V. Trusova [et al.] // Journal of fluorescence. – 2016. – Vol. 26, № 1. – Р. 177–187. https://doi.org/10.1007/s10895-015-1700-4
3. Selective G-quadruplex DNA recognition by a new class of designed cyanines / R. Nanjunda, E. Owens, L. Mickelson [et al.] // Molecules. – 2013. – Vol. 18, № 11. – Р. 13588–13607. https://doi.org/10.3390/molecules181113588
4. Yarmoluk, S. M. Symmetric cyanine dyes for detecting nucleic acids / S. M. Yarmoluk, V. B. Kovalska, M. Y. Losytskyy // Biotechnic & Histochemistry. – 2008. – Vol. 83, № 3–4. – Р. 131–145. https://doi.org/10.1080/10520290802383684
5. Trans-cis isomerization kinetics of cyanine dyes reports on the folding states of exogeneous RNA G-quadruplexes in live cells / A. Kitamura, J. Tornmalm, B. Demirbay [et al.] // Nucleic acids research. – 2023. – Vol. 51, № 5. – Р. e27–e27. https://doi.org/10.1093/nar/gkac1255
6. Demystifying PIFE: the photophysics behind the protein-induced fluorescence enhancement phenomenon in Cy3 / E. M. Stennett, M. A. Ciuba, S. Lin, M. Levitus // The journal of physical chemistry letters. – 2015. – Vol. 6, № 10. – Р. 1819–1823. https://doi.org/10.1021/acs.jpclett.5b00613
7. Initial state of DNA-Dye complex sets the stage for protein induced fluorescence modulation / F. Rashid, V.-S. Raducanu, M. S. Zaher [et al.] // Nature communications. – 2019. – Vol. 10, № 1. – Р. 2104. https://doi.org/10.1038/s41467-019-10137-9
8. Hwang, H. Protein induced fluorescence enhancement (PIFE) for probing protein–nucleic acid interactions / H. Hwang, S. Myong // Chemical Society Reviews. – 2014. – Vol. 43, № 4. – Р. 1221–1229. https://doi.org/10.1039/C3CS60201J
9. Development of fluorescence-based nucleic acid blot hybridization method using Cy5. 5 labeled DNA probes / Y. Cheng, N. Wang, Z. Ren, C. Xu // Journal of Microbiological Methods. – 2022. – Vol. 197. – Р. 106479. https://doi.org/10.1016/j.mimet.2022.106479
10. A near-infrared fluorescent heptamethine indocyanine dye with preferential tumor accumulation for in vivo imaging / C. Zhang, T. Liu, Y. Su [et al.] // Biomaterials. – 2010. – Vol. 31, № 25. – Р. 6612–6617. https://doi.org/10.1016/j.biomaterials.2010.05.007
11. Comparative study of the optical and heat generation properties of IR820 and indocyanine green /A.Fernandez-Fernandez, R. Manchanda, T. Lei [et al.] // Molecular imaging. – 2012. – Vol. 11, № 2. – Р. 99–113. https://doi.org/10.2310/7290.2011.00031
12. Cyanine dyes as contrast agents for near-infrared imaging in vivo: acute tolerance, pharmacokinetics, and fluorescence imaging / B. Ebert, B. Riefke, U. Sukowski, K. Licha // Journal of biomedical optics. – 2011. – Vol. 16, № 6. – Р. 066003. https://doi.org/10.1117/1.3585678
13. Pronkin, P. Isomerization and properties of isomers of carbocyanine dyes / P. Pronkin, A. Tatikolov // Sci. – 2019. – Vol. 1, № 1. – Р. 19. https://doi.org/10.3390/sci1010019
14. Cy3B™: improving the performance of cyanine dyes / M. Cooper, A. Ebner, M. Briggs [et al.] // Journal of Fluorescence. – 2004. – Vol. 14, № 2. – Р. 145–150. https://doi.org/10.1023/B:JOFL.0000016286.62641.59
15. Widengren, J. Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy / J. Widengren, P. Schwille // The Journal of Physical Chemistry A. – 2000. – Vol. 104, № 27. – Р. 6416–6428. https://doi.org/10.1021/jp000059s
16. Ultrafast radiationless deactivation of organic dyes: evidence for a two-state two-mode pathway in polymethine cyanines / A. Sanchez-Galvez, P. Hunt, M. A. Robb [et al.] // Journal of the American Chemical Society. – 2000. – Vol. 122, № 12. – Р. 2911–2924. https://doi.org/10.1021/ja993985x
17. Fluorescent properties of cyanine dyes as a matter of the environment / F. Fan, V. A. Povedailo, I. L. Lysenko [et al.] // Journal of Fluorescence. – 2024. – Vol. 34, № 2. – Р. 925–933. https://doi.org/10.1007/s10895-023-03321-0
18. Analysis of microviscosity and reaction coordinate concepts in isomerization dynamics described by Kramers’ theory / E. Åkesson, A. Hakkarainen, E. Laitinen [et al.] // The Journal of Chemical Physics. – 1991. – Vol. 95, № 9. – Р. 6508–6523. https://doi.org/10.1063/1.461521
19. Fluorescence properties and photophysics of the sulfoindocyanine Cy3 linked covalently to DNA / M. E. Sanborn, B. K. Connolly, K. Gurunathan, M. Levitus // The Journal of Physical Chemistry B. – 2007. – Vol. 111, № 37. – Р. 11064–11074. https://doi.org/10.1021/jp072912u
20. Near-infrared heptamethine cyanine dyes: a new tracer for solid-phase immunoassays / R. J. Williams, J. M. Peralta, V. C. W. Tsang [et al.] // Applied Spectroscopy. – 1997. – Vol. 51, № 6. – Р. 836–843. https://doi.org/10.1366/0003702971941115
21. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging / L. Yuan, W. Lin, K. Zheng [et al.] // Chemical Society Reviews. – 2013. – Vol. 42, № 2. – Р. 622–661. https://doi.org/10.1039/C2CS35313J
22. Near-infrared heptamethine cyanines (Cy7): from structure, property to application / L. Feng, W. Chen, X. Ma [et al.] // Organic & Biomolecular Chemistry. – 2020. – Vol. 18, № 46. – Р. 9385–9397. https://doi.org/10.1039/D0OB01962C
23. Levitz, A. Introduction of various substitutions to the methine bridge of heptamethine cyanine dyes Via substituted dianil linkers / A. Levitz, F. Marmarchi, M. Henary // Photochemical & Photobiological Sciences. – 2018. – Vol. 17, № 10. – Р. 1409–1416. https://doi.org/10.1039/c8pp00218e
24. A stepwise huisgen cycloaddition process: copper (I)‐catalyzed regioselective “ligation” of azides and terminal alkynes / V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless // Angewandte Chemie. ‒ 2002. ‒ Vol. 114, № 14. ‒ P. 2708–2711. https://doi.org/10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4
25. Tornøe, C. W. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper (I)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides / C. W. Tornøe, C. Christensen, M. Meldal // The Journal of Organic Chemistry. ‒ 2002. ‒ Vol. 67, № 9. ‒ P. 3057–3064. https://doi.org/10.1021/jo011148j
26. Deciphering the structure–property relations in substituted heptamethine cyanines / L. Stackova E. Muchová, M. Russo [et al.] // The Journal of Organic Chemistry. – 2020. – Vol. 85, № 15. – Р. 9776–9790. https://doi.org/10.1021/acs.joc.0c01104
27. The structure of cyanine 5 terminally attached to double-stranded DNA: implications for FRET studies / A. Iqbal, L. Wang, K. C. Thompson [et al.] // Biochemistry. – 2008. – Vol. 47, № 30. – Р. 7857–7862. https://doi.org/10.1021/bi800773f