Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Synthesis and study of antimicrobial activity of amides and salts of 4-aminoantipyrine – derivatives of 1-oxo-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole-7-carboxylic acids

https://doi.org/10.29235/1561-8331-2025-61-2-126-140

Abstract

By the condensation of 1-oxo-1,2,3,6,7,7a-hexahydrohydro3a,6-epoxyisoindole-7-carboxylic acids with 4-aminoantipyrine or N-methyl-1-[5-(p-tolyl)isodiesol-3-yl]methylamine in the presence of dicyclohexylbisodiimidine in a dichloromethane medium, corresponding amides with a yield of 67–78 % were synthesized. By the interaction of 1-oxo-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoisoindole-7-carboxylic acids with 4-aminoantipyrine or N-methyl-1-[5-(p-tolyl)isodioxol-3-yl]methylamine in methanol, corresponding ammonic salts with a yield of 93–97 % were obtained. Quantumchemical modelling of energy parameters and electronic structure of synthesized compounds by ab initio method, with the level of theory B3LYP1/MIDI, was carried out in order to preliminary assess their potential antibacterial and antiviral properties. The antimicrobial activity of the synthesized compounds against the strains Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 11229 was studied.

About the Authors

E. A. Dikusar
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Evgenij A. Dikusar – Ph. D. (Chemistry), Senior Researcher, Institute of Physical Organic Chemistry of National Academy of Sciences of Belarus.

13, Surganov Str., 220072, Minsk



E. A. Akishina
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Ekaterina A. Akishina – Researcher, Institute of Physical Organic Chemistry of National Academy of Sciences of Belarus.

13, Surganov Str., 220072, Minsk



N. A. Zhukovskaya
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Neliy A. Zukovskaya – Researcher, Institute of Physical Organic Chemistry of National Academy of Sciences of Belarus.

13, Surganov Str., 220072, Minsk



I. A. Kolesnik
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Irina A. Kolesnik – Ph. D. (Chemistry), Senior Researcher, Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus.

13, Surganov Str., 220072, Minsk



E. N. Margun
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Ekaterina N. Margun – Junior Researcher, Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus.

13, Surganov Str., 220072, Minsk



S. S. Kovalskaya
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Svetlana S. Koval’skaya – Ph. D. (Chemistry), Senior Researcher, Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus.

13, Surganov Str., 220072, Minsk



D. I. Menshikova
Russian Peoples’ Friendship University named after Patrice Lumumba
Russian Federation

Daria I. Menshikova – Student, Peoples’ Friendship University of Russia (RUDN University).

6, Miklukho-Maklay Str., 117198, Moscow



K. A. Alekseeva
Russian Peoples’ Friendship University named after Patrice Lumumba
Russian Federation

Kseniia A. Alekseeva – Postgraduate Student, Peoples’ Friendship University of Russia (RUDN university).

6, Miklukho-Maklay Str., 117198, Moscow



I. I. Kontsevaya
Francisk Skorina Gomel State University
Belarus

Irina I. Kontsevaya – Ph. D. ( Biology), Associate Professor of the Department, Francisk Skorina Gomel State University.

104, Sovetskaya Str., 246028, Gomel



V. I. Potkin
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Vladimir I. Potkin – Dr. Sc. (Chemistry), Professor, Academician, Head of the Laboratory, Institute of Physical Organic Chemistry of National Academy of Sciences of Belarus.

13, Surganov Str., 220072, Minsk



References

1. Csende F., Porkolab A. A Review on Antibacterial Activity of Some Isoindole Derivatives. Der Pharma Chemica, 2018, vol. 10, no. 6, pp. 43−50.

2. Kocyigit U. M., Budak Y., Gürdere M. B., Tekin Ş., Kőprülü T. K., Evtürk F., Őzcan K., Gülçin I., Ceylan M. Synthesis, characterization, anticancer, antimicrobial and carbonic anhydrase inhibition profiles of novel (3aR,4S,7R,7aS)-2-(4-((E)-3-(3-aryl)acryloyl)phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione derivatives. Bioorganic Chemistry, 2017, vol. 70, pp. 118−125. https://doi.org/10.1016/j.bioorg.2016.12.001

3. Süloğlu A. K., Selmanoglu G., Gündoğdu Ő., Kishali N. H., Girgin G., Palabiyik S., Tan A., Kara Y., Baydar T. Evaluation of isoindole derivatives: Antioxidant potential and cytotoxicity in the HT-29 colon cancer cells. Archiv der Pharmazie, 2020, vol. 353, no. 11, рр. e2000065. https://doi.org/10.1002/ardp.202000065

4. Tan A., Yaglioglu A.S., Kishali N.H., Sahin E., Kara Y. Evaluation of Cytotoxic Potentials of Some Isoindole-1,3-Dione Derivatives on HeLa, C6 and A549 Cancer Cell Lines. Medicinal Chemistry, 2020, vol. 16, no. 1, pp. 69−77. https://doi.org/10.2174/1573406415666181206115638

5. Szkatuła D., Kvzyźak E., Stanowska P., Duba M., Wiatrak B. A New N-Substituted 1H-Isoindole-1,3(2H)-Dione Derivative−Synthesis, Structure and Affinity for Cyclooxygenase Based on In Vitro Studies and Molecular Docking. International Journal of Molecular Sciences., 2021, vol. 22, no. 14, art. 7678. https://doi.org/10.3390/ijms22147678

6. Portevin B., Tordjman C., Pastourean P., Bonnet J., Nanteuil G.D. 1,3-Diaryl-4,5,6,7-tetrahydro-2H-isoindole Derivatives: A New Series of Potent and Selective COX-2 Inhibitors in Which a Sulfonyl Group Is Not a Structural Requisite. Journal of Medicinal Chemistry, 2000, vol. 43, no. 24, pp. 4582−4593. https://doi.org/10.1021/jm990965x

7. Singha L. S., Bareh V., Alam F. Synthesis and analgesic activity of [1,3,4]-thiadiazole-[1,3-dione]-isoindole derivatives. International Journal of Pharmaceutical Sciences and Research, 2021, vol. 12, no. 10, pp. 5341−5352. https://doi.org/10.13040/ijpsr.0975-8232.12(10).5341-52

8. Sakthivel A., Jeyasubramanian K., Thangagiri B., Dhaveethu Raja J. Recent advances in schiff base metal complexes derived from 4-aminoantipyrine derivatives and their potential applications. Journal of Molecular Structure, 2020, vol. 1222, art. 128885. https://doi.org/10.1016/j.molstruc.2020.128885

9. Aguilar-Llanos E., Carrera-Pacheco S. E., González-Pastor R., Zúñiga-Miranda J., Rodríguez-Pólit C., Mayorga-Ramos A., Carrillo-Naranjo O., Guamán L.P., Romero-Benavides J. C., Cevallos-Morillo C., Echeverría G. A., Piro O. E., Alcívar-León Ch. D., Heredia-Moya J. Crystal Structure, Hirshfeld Surface Analysis, and Biological Activities of Schiff-Base Derivatives of 4-Aminoantipyrine. ACS Omega, 2023, vol. 8, no. 45, pp. 42632–42646. https://doi.org/10.1021/acsomega.3c05372

10. Teran R., Guevara R., Mora J., Dobronski L., Barreiro-Costa O., Beske T., Pérez-Barrera J., Araya-Maturana R., Rojas-Silva P., Poveda A., Heredia-Moya J. Characterization of Antimicrobial, Antioxidant, and Leishmanicidal Activities of Schiff Base Derivatives of 4-Aminoantipyrine. Molecules, 2019, vol. 24, no. 15, pp. 2696. https://doi.org/10.3390/molecules24152696

11. Çakmak R., Başaran E., Boğa, M., Erdoğan Ö., Çınar E., Çevik Ö. Schiff Base Derivatives of 4-Aminoantipyrine as Promising Molecules: Synthesis, Structural Characterization, and Biological Activities. Russian Journal of Bioorganic Chemistry, 2022, vol. 48, no. 2, pp. 334–344. https://doi.org/10.1134/S1068162022020182

12. Kumar R., Sing H., Mazumder A., Salahuddin, Yadav R.K. Synthetic Approaches, Biologica Activities, and Structure-Activity Relationship of Pyrazolines and Related Derivatives. Topics in Current Chemistry, 2023, vol. 381, no. 12. https://doi.org/10.1007/s4061-023-00422-z

13. Shmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Su S. J., Midus T. L., Dupnis M., Montgomery J. A. General Atomic and Molecular Electronic-StructureSystem. Journal of Computational Chemistry, 1993, vol. 14, no. 7, pp. 1347–1363. https://doi.org/10.1002/jcc.540141112

14. Huzinaga S., Andzelm J., Radzio-Andzelm E., Sakai Y., Tatewaki H., Klobukowski M. Gaussian Basis Sets for Molecular Calculations. Physical Sciences Data, vol. 16. Amsterdam: Elsevier, 1984. 426 p. https://doi.org/10.1016/c2009-0-07152-9

15. Chemcraft − graphical software for visualization of quantum chemistry computations. Available at: https://www.chemcraftprog.com (accessed 5 December 2024).

16. Daniels F., Alberty R. A. Physical Chemistry. New York, John Wiley and Sons, Inc., 1955. 671 p.

17. Fukui K., Yonezawa T., Shingu H. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. Journal of Chemical Physics, 1952, vol. 20, no. 4, pp. 722−725. https://doi.org/10.1063/1.1700523

18. Dewar M. Y. S., Dougherty R. C. The PMO theory of organic chemistry. New York, Springer, 1975. 696 p. https://doi.org/10.1007/978-1-4613-4404-9

19. Putz M. V., Putz A. M. DFT chemical reactivity driven by biological activity: applications for the toxicological fate of chlorinated PAHs. Putz M. V., Mingos M. P. (eds.). Applications of Density Functional Theory to Biological and Bioinorganic Chemistry. Berlin: Springer Link, 2013, pp. 181-231. https://doi.org/10.1007/978-3-642-32750-6_6

20. Xavier S., Periandy S., Ramalingam S. NBO, Conformational, NLO, HOMO-LUMO, NMR and Electronic Spectral Study on 1-Phenyl-1-Propanol by Quantum Computational Methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, vol. 137, pp. 306–320. https://doi.org/10.1016/j.saa.2014.08.039

21. Bhattacharya B., Sarkar U. Bhattacharya, B. Graphyne–graphene (nitride) heterostructure as nanocapacitor. Chemical Physics, 2016, vol. 478, pp. 73–80. https://doi.org/10.1016/j.chemphys.2016.05.004

22. Ermakov Yu. A., Sokolov V. S., Akimov S. A., Batishev O. V. Physicochemical and electrochemical aspects of the functioning of biological membranes. Russian Journal of Physical Chemistry A, 2020, vol. 94, no. 3, pp. 471−476. https://doi.org/10.1134/s0036024420030085

23. Guidelines for conducting preclinical studies of medicinal products, ed. by A. N. Mironov. Moscow, Grif and K. Publ., 2012. 197 p. (in Russian).

24. Habriev R. U. Guidelines for experimental (preclinical) study of new pharmacological substances: methodological instructions. Moscow, Medicina Publ., 2005. 832 p. (in Russian).

25. Determination of the sensitivity of microorganisms to antibacterial drugs: Methodical instructions. Moscow, Federal Center for State Sanitary and Epidemiological Surveillance of the Ministry of Health of Russia, 2004. 91 p. (in Russian)

26. Dikusar E. A., Kozlov N. G., Potkin V. I., Tlegenov R. T., Uteniyazov R. U. Amine salts of organic acids. Nukus, Karakalpakstan Publ., 2009. 143 p. (in Russian).

27. Dikusar E. A., Potkin V. I., Kozlov N. G., Rudakov D. A., Stepin S. G. Pharmacophore salts of organic acids and amines: synthesis, structure, biological activity. Communication 2. Salts of organoelement and organic acids, phosphines, nitrogen bases, metals and metal complexes. Vestnik farmacii, 2013, no. 4 (62), pp. 99–110 (in Russian).


Review

Views: 96


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)