Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Hybrid composites based on calcium carbonate-phosphates and fibrin saturated with antibiotic

https://doi.org/10.29235/1561-8331-2025-61-3-196-205

Abstract

Hybrid composites based on calcium carbonate-phosphates and fibrin were obtained by wet precipitation in presence of citrated plasma (6–50 vol.%). Inorganic component of the composites represents amorphous calcium carbonatephosphates and  amorphized  carbonated  hydroxyapatite  (A-type)  with  a  Ca/P  ratio  of  1.71.  After  15  days  of  aging in the SBF model solution, the hybrid composites are enriched with biomimetic apatite (up to 8.8 wt.%) without changing  of Ca/P ratio of 1.71. Fibrin macromolecules provide partial removal of CO32–ions from the structure of hybrid composites and apatite-forming capacity in the model SBF solution. Hybrid composites absorb up to 92 % of ciprofloxacin from aqueous solutions; the sorption capacity reaches 0.126 mmol/g. During 10 days of soaking in physiological solution, the composites release up to 89 % of the antibiotic; rate constant of ciprofloxacin release for composites measures 0,021 mmol/(g ∙ h0.25) versus 0,051 mmol/(g ∙ h0.10) for calcium carbonate-phosphates

About the Authors

I. E. Glazov
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Glazov Ilya E. – Ph. D. (Chemistry), Senior Researcher

9/1, Surganov Str., 220072, Minsk



V. K. Krut’ko
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Krut’ko Valentina K. – Ph. D. (Chemistry), Associate Professor, Head of the Laboratory

9/1, Surganov Str., 220072, Minsk



O. N. Musskaya
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Musskaya Olga N. – Ph. D. (Chemistry), Associate Professor, Leading Researcher

9/1, Surganov Str., 220072, Minsk



E. N. Krutsko
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Krutsko Evgeny N. – Senior Researcher

9/1, Surganov Str., 220072, Minsk



A. I. Kulak
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Kulak Anatoly I. – Academician, D. Sc. (Chemistry), Professor, Director

9/1, Surganov Str., 220072, Minsk

 



References

1. Katz J. S., Burdick J. A. Synthetic biomaterials. Bronzino J. D., Peterson D. R. (eds.). Molecular, Cellular, and Tissue Engineering. CRC Press, 2018. Chapter. 43.

2. Šupová M. Substituted hydroxyapatites for biomedical applications: A review. Ceramics International, 2015, vol. 41, no. 8, pp. 9203–9231. https://doi.org/10.1016/j.ceramint.2015.03.316

3. Landi E., Celotti G., Logroscino G., Tampieri A. Carbonated hydroxyapatite as bone substitute. Journal of European Ceramic Society, 2003, vol. 23, no. 15, pp. 2931–2937. https://doi.org/10.1016/S0955-2219(03)00304-2

4. Rupani A., Hidalgo-Bastida L. A., Rutten F., Dent A., Turner I., Cartmell S. Osteoblast activity on carbonated hydroxyapatite. Journal of Biomedical Materials Research Part A, 2012, vol. 100, no. 4, pp. 1089–1096. https://doi.org/10.1002/jbm.a.34037

5. Germaini M.-M., Detsch R., Grünewald A., Magnaudeix A., Lalloue F., Boccaccini A. R., Champion E. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration. Biomedical materials, 2017, vol. 12, no. 3, pp. 035008. https://doi.org/10.1088/1748-605X/aa69c3

6. Glazov I. E., Krut’ko V. K., Musskaya O. N., Kulak A. I. Low-temperature formation and identification of biphasic calcium carbonate-phosphates. Russian Journal of Inorganic Chemistry, 2022, vol. 67, no. 11, pp. 1718–1730 (in Russian). https://doi.org/10.1134/S0036023622601313

7. Glazov I. E., Krut’ko V. K., Musskaya O. N., Kulak A. I. Wet synthesis of carbonated hydroxyapatite. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2019, vol. 55, no. 4, pp. 391–399 (in Russian). https://doi.org/10.29235/1561-8331-2019-55-4-391-399

8. Alhasyimi A. A., Pudyani P. S., Asmara W., Ana I. D. Effect of carbonated hydroxyapatite incorporated advanced platelet rich fibrin intrasulcular injection on the alkaline phosphatase level during orthodontic relapse. AIP Conference Proceedings, vol. 1933, no. 1, pp. 030006. https://doi.org/10.1063/1.5023953

9. Yoh R., Matsumoto T., Sasaki J., Sohmura T. Biomimetic fabrication of fibrin/apatite composite material. Journal of Biomedical Materials Research Part A, 2008, vol. 87, no. 1, pp. 222–228. https://doi.org/10.1002/jbm.a.31777

10. Vlasov R. A., Melnik V. F., Merkulova E. P., Krut’ko V. K., Musskaya O. N., Kulak A. I., Lesnikovich L. A., Ulasevich S. A. Application of composite materials on the basis of fibrine and hydrogel of hydroxyapatite for rhinoseptoplasty. Otorinolaringologiya. Vostochnaya Evropa = Otorhinolaryngology. Eastern Europe, 2013, no. 3, p. 29–32 (in Russian).

11. Urish, K. L., Cassat J. E. Staphylococcus aureus osteomyelitis: bone, bugs, and surgery. Infection and Immunity, 2020, vol. 88, no. 7, art. no. 10.1128/iai.00932-19. https://doi.org/10.1128/iai.00932-19

12. Lüthje F. L., Jensen L. K., Jensen H. E., Skovgaard K. The inflammatory response to bone infection–a review based on animal models and human patients. Apmis, 2020, vol. 128, no. 4, pp. 275–286. https://doi.org/10.1111/apm.13027

13. Fu T., Fan Z., Li Y., Li Z., Du B., Liu S., Cui X., Zhang R., Zhao H., Feng Y, Xue G., Cui J., Yan C., Gan L., Feng J., Xu Z., Yu Z., Tian Z., Ding Z., Chen J., Chen Y., Yuan J. ArcR contributes to tolerance to fluoroquinolone antibiotics by regulating katA in Staphylococcus aureus. Frontiers in Microbiology, 2023, vol. 14, pp. 1106340. https://doi.org/10.3389/fmicb.2023.1106340

14. Lara-Ochoa S., Ortega-Lara W., Guerrero-Beltrán C. E. Hydroxyapatite nanoparticles in drug delivery: physicochemistry and applications. Pharmaceuticals, 2021, vol. 13, no. 10, p. 1642. https://doi.org/10.3390/pharmaceutics13101642

15. Kanellakopoulou K., Tsourvakas S., Hatzigrigoris P., Chryssouli Z., Dounis E., Giamarellou H. Release of newer quinolones from acrylic bone cement and fibrin clots in vitro. Drugs, 1993, vol. 45, no. 3, pp. 240–241. https://doi.org/10.2165/00003495199300453-00073

16. Glazov I. E., Krut’ko V. K., Vlasov R. A. Musskaya O. N., Kulak A. I. Nanocomposites based on apatitic tricalcium phosphate and autofibrin. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk= Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2021, vol. 57, no. 4, pp. 413–423 (in Russian). https://doi.org/10.29235/1561-83312021-57-4-413-423

17. Glazov I. E., Krut’ko V. K., Kulak A. I., Musskaya O. N., Vlasov R. A., Malakhovsky P. O., Dileep Kumar V. G., Surya P. S., Sridhar M. S., Reddy N. Effect of platelet-poor plasma additive on the formation of biocompatible calcium phosphates. Materials Today Communications, 2021, vol. 47, no. 5, pp. 102224. https://doi.org/10.1016/j.mtcomm.2021.102224

18. Dridi A., Riahi K. Z., Somrani S. Mechanism of apatite formation on a poorly crystallized calcium phosphate in a simulated body fluid (SBF) at 37 °C. Journal of Physics and Chemistry of Solids, 2021, vol. 156, pp. 110122. https://doi.org/10.1016/j.jpcs.2021.110122

19. Thai T., Salisbury B.H., Zito P.M. Ciprofloxacin. Florida, StatPearls Publishing, 2023. Available at: https://www.ncbi.nlm. nih.gov/sites/books/NBK535454/ (Accessed 25 June 2025).

20. Heragh B. K., Javanshir S., Mahdavinia G. R., Naimi-Jamal M. R. Development of pH-sensitive biomaterial-based nanocomposite for highly controlled drug release. Results in Materials, 2022, vol. 16, p. 100324. https://doi.org/10.1016/j.rinma.2022.100324

21. Doebelin N., Kleeberg R. Profex: a graphical user interface for the Rietveld refinement program BGMN. Journal of applied crystallography, 2015, vol. 48, no. 5, pp. 1573–1580. https://doi.org/10.1107/S1600576715014685

22. Glazov I. E., Krut’ko V. K., Safronova T. V., Sazhnev N. A., Kil’deeva N. R., Vlasov R. A., Musskaya O. N., Kulak A. I., Formation of the Hydroxyapatite-based Hybrid Materials in Presence of Platelet-Poor Plasma Additive. Biomimetics, 2023, no. 8, pp. 297. https://doi.org/10.3390/biomimetics8030297

23. Glazov I. E., Krut’ko V. K., Musskaya O. N., Kulak A. I. Stabilization of the amorphous state of calcium carbonate-phosphates with phosphate ions. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2022, vol. 66, no. 5, pp. 501–508 (in Russian). https://doi.org/10.29235/1561-8323-2022-66-5-501-508

24. Nzulumike A. N. O. Fibrin Formation and Morphologies at Biomaterial Interfaces [PhD thesis]. Kongens Lyngby, 2022. 178 p.

25. Cheikh S., Imessaoudene Ali, Bollinger J-C., Hadadi A., Manseri A., Bouzaza A., Assadi A., Amrane A., Zamouche M., El Jery A., Mouni L. Complete Elimination of the Ciprofloxacin Antibiotic from Water by the Combination of Adsorption–Photocatalysis Process Using Natural Hydroxyapatite and TiO2. Catalysts, 2023, vol. 13, no. 2, p. 336. https://doi.org/10.3390/catal13020336

26. Pandey S., Pandey P., Tiwari G., Tiwari R., Rai A. K. FTIR spectroscopy: A tool for quantitative analysis of ciprofloxacin in tablets. Indian journal of pharmaceutical sciences, 2012, vol. 74, no. 1, p. 86. https://doi.org/10.4103/0250-474X.102551

27. Bruschi M. L. Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing, 2015. 198 p. https://doi.org/10.1016/C2014-0-02342-8

28. Paarakh M. P., Jose P. A., Setty C. M., Peterchristoper G. V. Release kinetics–concepts and applications. International Journal of Pharmacy Research & Technology, 2018, vol. 8, no. 1, pp. 12–20. https://doi.org/10.31838/ijprt/08.01.02

29. Páez P. L., Becerra M. C., Albesa I. Effect of the association of reduced glutathione and ciprofloxacin on the antimicrobial activity in Staphylococcus aureus. FEMS microbiology letters, 2010, vol. 303, no. 1, pp. 101–105. https://doi.org/10.1111/j.1574-6968.2009.01867.x


Review

Views: 113


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)