Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

4,5-dichlorizothiazole-3-carboxylates and pyridine-containing derivatives of benzocyclopentaquinolines and benzacridines: synthesis and quantumchemical modeling of physicochemical properties and dependence structure–biological activity

https://doi.org/10.29235/1561-8331-2025-61-3-206-217

Abstract

Benzocyclopentaquinolines and benzacridines were obtained via cascade three-component condensation of substituted aldehydes, 1,3-cycloalkyldiketones and 2-naphthylamine or 1,5-diaminonaphthalene with a yield of 60–88 %. The synthesized polynitrogen heterocyclic compounds are of interest for biotesting for various types of activity and also as bulk ligands for obtaining metal complexes – promising catalysts for cross-combination reactions. Using the quantum chemical modeling method by conducting nonempirical calculations with a theory level of HF/6-31G, a complete optimization of geometric parameters was carried out and the electronic structure of 18 esters of 4,5-dichlorothiazole carboxylic acid with substituted benzocyclopentaquinolines and benzoacridines was determined.

About the Authors

E. A. Dikusar
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Dikusar Evgenij A. – Ph. D. (Chemistry), Senior Researcher

13, Surganov Str., 220072, Minsk



E. A. Akishina
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Akishina Ekaterina A. – Researcher

13, Surganov Str., 220072, Minsk



S. S. Kovalʼskaya
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Koval'skaya Svetlana S. – Ph. D. (Chemistry), Senior Researcher.

13, Surganov Str., 220072, Minsk



N. A. Zhukovskaya
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Zhukovskaya Neliya A. – Researcher

13, Surganov Str., 220072, Minsk



V. I. Potkin
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Potkin Vladimir I. – Academician, Dr. Sc. (Chemistry), Professor, Head of the Laboratory

13, Surganov Str., 220072, Minsk



References

1. Dikusar E. A., Akishina E. A., Petkevich S. K., Zhukouskaya N. A., Alekseyev R. S., Bumagin N. A., Shahab S. N., Filippovich L. N., Potkin V. I. Synthesis of Bisacridine Derivatives with Pyridine and 1,2-Azole Fragments. Russian Journal of General Chemistry, 2022, vol. 92, no. 1, pp. 40–53 (in Russian). https://doi.org/10.1134/s1070363222010078

2. Dikusar E. A., Akishina E. A., Kovalskaya S. S., Grigoriev M. S., Fedoseeva M. A., Alekseeva K. A., Potkin V. I. Pyridinecontaining benzocyclopentaquinolines and benzacridines and their quaternary. Zhurnal obshhej himii = Journal of General Chemistry, 2023, vol. 93, no. 7, pp. 1023–1034 (in Russian). https://doi.org/10.31857/S0044460X23070053

3. Varakumar P., Rajagopal K., Aparna B., Raman K., Byran G., Lima C. M. G., Rashid S., Nafady M. H., Emran T. B., Wybraniec S. Acridine as an Anti-Tumour Agent: A Critical Review. Molecules, 2022, vol. 28, no. 1, art. 193. https://doi.org/10.3390/molecules28010193

4. Baliwada A., Rajagopal K., Varakumar P., Raman K., Byran G. A Review on Acridines as Antiproliferative Agents. MiniReviews in Medicinal Chemistry, 2022, vol. 22, no. 21, pp. 2769–2798. https://doi.org/10.2174/-1389557522666220511125744

5. Denny W. A. Acridine derivatives as chemotherapeutic agents. Current Medicinal Chemistry, 2022, vol. 9, no. 18, pp. 1655–1665. https://doi.org/10.2174/0929867023369277

6. Vispé S., Vandenberghe I., Robin M., Annereau J. P., Créancier L., Pique V., Galy J. P., Kruczynski A., Barret J. M., Bailly C. Novel tetra-acridine derivatives as dual inhibitors of topoisomerase II and the human proteasome. Biochemical Pharmacology, 2007, vol. 73, no. 12, pp. 1863–1972. https://doi.org/10.1016/j.bcp.2007.02.016

7. Baguley B. C., Wakelin L. P., Jacintho J. D., Kovacic P. Mechanisms of action of DNA intercalating acridine-based drugs: how important are contributions from electron transfer and oxidative stress? Current Medicinal Chemistry, 2003, vol. 10, no. 24, pp. 2643–2649. https://doi.org/10.2174/0929867033456332

8. Oppegard L. M., Ougolkov A. V., Luchini D. N., Schoon R. A., Goodell J. R., Kaur H., Billadeau D. D., Ferguson D. M., Hiasa H. Novel acridine-based compounds that exhibit an anti-pancreatic cancer activity are catalytic inhibitors of human topoisomerase II. European Journal of Pharmacology, 2009, vol. 602, no. 2–3, pp. 223–229. https://doi.org/10.1016/j.ejphar.2008.11.044

9. Gamage S. A., Spicer J. A., Atwell G. J., Finlay G. J., Baguley B. C., Denny W. A. Structure-activity relationships for substituted bis(acridine-4-carboxamides): a new class of anticancer agents. Journal of Medicinal Chemistry, 1999, vol. 42, no. 13, pp. 2383–2393. https://doi.org/10.1021/jm980687m

10. Deeva E. G., Pavlovskaya Ya. V., Kiselyov O. I., Kiselyov V. I., Piotrovsky L. В., Ershov F. I. The structural-and-functional analysis of the biological activity of acridine derivatives. Vestnik Rossiiskoi akademii medetsinskikh nauk = Annals of the Russian Academy of Medical Sciences, 2004, no. 2, pp. 29–34 (in Russian).

11. Rupar J. S., Dobričić V. D., Aleksić M. M., Brborić J. S., Čudina O. A. A review of published data on acridine derivatives with different biological activites. Kragujevac Journal of Science, 2018, vol. 40, no. 1, pp. 83–101. https://doi.org/10.5937/kgjsci1840083r

12. Makhey D., Yu C., Liu A., Liu L. F., LaVoie E. J. Substituted benz[a]acridines and benz[c]acridines as mammalian topoisomerase poisons. Bioorganic & Medicinal Chemistry, 2000, vol. 8, no. 5, pp. 1171–1182. https://doi.org/10.1016/S0968-0896(00)00048-1

13. Nowak K. Chemical structures and biological activities of bisand tetrakis-acridine derivatives: A review. Journal of Molecular Structure, 2017, vol. 1146, pp. 562–570. https://doi.org/10.1016/J.MOLSTRUC.2017.05.042

14. Shmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Su S. J., Midus T. L., Dupnis M., Montgomery J. A. General Atomic and Molecular Electronic-Structure System. Journal of Computational Chemistry, 1993, vol. 14, no. 7, pp. 1347–1363. https://doi.org/10.1002/jcc.540141112

15. Putz M. V., Putz A. M. DFT Chemical Reactivity Driven by Biological Activity: Applications for the Toxicological Fate of Chlorinated PAHs. Putz M., Mingos D. (eds.). Applications of Density Functional Theory to Biological and Bioinorganic Chemistry. Structure and Bonding, vol 150. Springer, Berlin, Heidelberg, 2013, pp. 181–231. https://doi.org/10.1007/978-3-642-32750-6_6

16. Petkevich S. K., Kletskov A. V., Kadutskii A. P., Dikusar E. A., Kozlov N. G., Potkin V. I. Synthesis of Alkaloid Analogs Containing Isoxazole and Isothiazole Fragments. Russian Journal of Organic Chemistry, 2018, vol. 54, no. 12, pp. 1807–1814. (in Russian). https://doi.org/10.1134/s1070428018120126


Review

Views: 106


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)