Synthesis of 3-(5-isopropyl-2,4-dimethoxyphenyl)-4-methoxybenzo[d]isoxazole-5-amine and its application for the preparation of new Hsp90 inhibitors
https://doi.org/10.29235/1561-8331-2025-61-3-218-226
Abstract
An efficient synthetic scheme for 5-amino-4-methoxybenzo[d]isoxazoles has been developed starting from 3-(5-isopropyl-2,4-dimethoxyphenyl)-6,7-dihydrobenzo[d]isoxazole-4(5H)-one – a scaffold for the preparation of new Hsp90 inhibitors. The key stages in the synthesis included dibromination at position 5, aromatization, and subsequent copper-catalyzed cross-coupling of 5-bromo-4-methoxybenzo[d]isoxazole with sodium azide, with simultaneous reduction to 5-amino-4-methoxybenzo[d]isoxazole. Using the developed scheme, a potential Hsp90 inhibitor was obtained, which showed high antiproliferative activity against breast cancer cells of BT-474 line (IC50 = 5 µM) and moderate activity against MCF-7 cells.
About the Authors
N. A. VarabyevaBelarus
Varabyeva Nastassia A. – Postgraduate Student, Junior Researcher
5/2, Kuprevich Str., 220084, Minsk
D. I. Paulovich
Belarus
Paulovich Dzmitry I. – Master’s Student, Junior Researcher
5/2, Kuprevich Str., 220084, Minsk
T. V. Chukarina
Belarus
Chukarina Tatyana V. – Researcher. Institute of Bioorganic
5/2, Kuprevich Str., 220084, Minsk
S. E. Ogurtsova
Belarus
Ogurtsova Svetlana E. – Ph. D. (Biology), Head of the Department
5/2, Kuprevich Str., 220084, Minsk
Y. A. Piven
Belarus
Piven Yuri A. – Ph. D. (Chemistry), Associate Professor, Head of the Laboratory
5/2, Kuprevich Str., 220084, Minsk
F. A. Lakhvich
Belarus
Lakhvich Fedor A. – Academician, D. Sc. (Chemistry), Professor, Chief Researcher
5/2, Kuprevich Str., 220084, Minsk
References
1. Rakesh K. P., Shantharam C. S., Sridhara M. B., Manukumar H. M., Qin H. L. Benzisoxazole: a privileged scaffold for medicinal chemistry. Medchemcomm, 2017, vol. 8, no. 11, pp. 2023–2039. https://doi.org/10.1039/c7md00449d
2. Porter J. R., Fritz C. C., Depew K. M. Discovery and development of Hsp90 inhibitors: a promising pathway for cancer therapy. Current Opinion in Chemical Biology, 2010, vol. 14, no. 3, pp. 412–420. https://doi.org/10.1016/j.cbpa.2010.03.019
3. Zhang J., Li H., Liu Y., Zhao K.,Wei S., Sugarman E. T., Liu L., Zhang G. Targeting HSP90 as a Novel Therapy for Cancer: Mechanistic Insights and Translational Relevance. Cells, 2022, vol. 11, no. 18. https://doi.org/10.3390/cells11182778
4. Hoy S. M. Pimitespib: First Approval. Drugs, 2022, vol. 82, pp. 1413–1418. https://doi.org/10.1007/s40265-022-01764-6
5. Yu J., Zhang C., Song C. Panand isoform-specific inhibition of Hsp90: Design strategy and recent advances. European Journal of Medicinal Chemistry, 2022, vol. 238, pp. 114516. https://doi.org/10.1016/j.ejmech.2022.114516
6. Liu Y., Li C., Liu H., Tan S. Combination therapy involving HSP90 inhibitors for combating cancer: an overview of clinical and preclinical progress. Archives of Pharmacal Research, 2024, vol. 47, pp. 442–464. https://doi.org/10.1007/s12272-024-01494-1
7. Brough P. A., Aherne W., Barril X., Borgognoni J., Boxall K., Cansfield J. E. [et al.]. 4,5-diarylisoxazole Hsp90 chaperone inhibitors: potential therapeutic agents for the treatment of cancer. Journal of Medicinal Chemistry, 2008, vol. 51, no. 2, pp. 196–218. https://doi.org/10.1021/jm701018h
8. Piotrowska Z., Costa D. B., Oxnard G. R., Huberman M., Gainor J. F., Lennes I. T., Muzikansky A., Shaw A. T., Azzoli C. G., Heist R. S., Sequist L. V. Activity of the Hsp90 inhibitor luminespib among non-small-cell lung cancers harboring EGFR exon 20 insertions. Annals of Oncology, 2018, vol. 29, no. 10, pp. 2092–2097. https://doi.org/10.1093/annonc/mdy336
9. Noor Z. S., Goldman J. W., Lawler W. E., Telivala B., Braiteh F., DiCarlo B. A., Kennedy K., Adams B., Wang X., Jones B., Slamon D. J., Garon E. B. Luminespib plus pemetrexed in patients with non-squamous non-small cell lung cancer. Lung Cancer, 2019, vol. 135, pp. 104–109. https://doi.org/10.1016/j.lungcan.2019.05.022
10. Gopalsamy A., Shi M., Golas J., Vogan E., Jacob J., Johnson M., Lee F., Nilakantan R., Petersen R., Svenson K., Chopra R., Tam M. S., Wen Y., Ellingboe J., Arndt K., Boschelli F. Discovery of benzisoxazoles as potent inhibitors of chaperone heat shock protein 90. Journal of Medicinal Chemistry, 2008, vol. 51, no. 3, pp. 373. https://doi.org/10.1021/jm701385c
11. Varabyeva N. A., Salnikova D. I., Krymov S. K., Bogdanov F. B., Shchekotikhin A. E., Puzanau R. M., Sorokin D. V., Lakhvich F. A., Scherbakov A. M., Piven Y. A. Design and Synthesis of Novel 6,7‐Dihydrobenzo[d]isoxazol‐4(5H)‐one Derivatives Bearing 1,2,3‐Triazole Moiety as Potential Hsp90 Inhibitors and their Evaluation as Antiproliferative Agents. ChemistrySelect, 2024, vol. 9, no. 12, pp. e202304812. https://doi.org/10.1002/slct.202304812
12. Markiewicz J. T., Wiest O., Helquist P. Synthesis of primary aryl amines through a copper-assisted aromatic substitution reaction with sodium azide. Journal of Organic Chemistry, 2010, vol. 75, no. 14, pp. 4887–4890. https://doi.org/10.1021/jo101002p
13. Trott O., Olson A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 2010, vol. 31, no. 2, pp. 455–461. https://doi.org/10.1002/jcc.21334
14. De Mattos-Arruda L., Cortes J. Breast cancer and Hsp90 inhibitors: is there a role beyond the HER2-positive subtype? Breast, 2012, vol. 21, no. 4, pp. 604–607. https://doi.org/10.1016/j.breast.2012.04.002
15. Sander T., Freyss J., von Korff M., Rufener C. DataWarrior: an open-source program for chemistry aware data visualization and analysis. Journal of Chemical Information and Modeling, 2015, vol. 55, no. 2, pp. 460–473. https://doi.org/10.1021/ci500588j
16. O’Boyle N. M., Banck M., James C. A., Morley C., Vandermeersch T., Hutchison G. R. Open Babel: An open chemical toolbox. Journal of Cheminformatics, 2011, vol. 3, no. 1, pp. 33. https://doi.org/10.1186/1758-2946-3-33
17. Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., Olson A. J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 2009, vol. 30, no. 16, pp. 2785–2791. https://doi.org/10.1002/jcc.21256
18. Alhossary A., Handoko S. D., Mu Y., Kwoh C. K. Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics, 2015, vol. 31, no. 13, pp. 2214–2216. https://doi.org/10.1093/bioinformatics/btv082