Biocatalytic conversion of milk proteins into low molecular peptides
https://doi.org/10.29235/1561-8331-2025-61-3-227-236
Abstract
A comparative analysis of the efficiency of milk protein hydrolysis by trypsin and neutral protease using different methods of their addition was conducted. It was found that proteolysis by trypsin (enzyme-substrate ratio 1 : 40) at a temperature 37 °C and pH 8.0 leads to the formation of 81.2 ± 5.5 % of peptides with molecular mass less than 3.0 kDa, while protein hydrolysis by neutral protease (enzyme-substrate ratio 1 : 20) under the same conditions produces 86.6 ± 4.7 % of low molecular weight peptide fractions. It was shown that sequential application of trypsin and neutral protease allows obtaining, on average, 94.9 % of short peptides in comparison with the joint addition (91.3 ± 1.1 % of low molecular weight peptides). The application of the single enzyme provides the production of partial hydrolysates that can be used in the formulation of functional foods with reduced allergenicity, while the sequential and joint addition of trypsin and neutral protease generates extensive hydrolysates, which are considered optimal ingredients in the creation of hypoallergenic food products.
About the Authors
V. N. LeontievBelarus
Leontiev Viktor N. – Ph. D. (Chemistry), Associate Professor, Head of the Department
13a, Sverdlov Str., 220006, Minsk
O. I. Lazovskaya
Belarus
Lazovskaya Olesya I. – M. Sc. (Chemistry), Research Assistant
13a, Sverdlov Str., 220006, Minsk
A. R. Popenya
Belarus
Popenya Anna R. – Student
13a, Sverdlov Str., 220006, Minsk
References
1. Zinina O. V., Nikolina A. D., Khvostov D. V., Rebezov M. B., Zavyalov S. N., Akhmedzyanov R. V. Protein hydrolysate as a source of bioactive peptides in diabetic food products. Pishchevye sistemy = Food Systems, 2023, vol. 6, no. 4, pp. 440–448 (in Russian). https://doi.org/10.21323/2618-9771-2023-6-4-440-448
2. Adewole T. S., Bieni M. C., Ogundepo G. E., Odekanyin O. O., Kuku A. Investigation of functional, antioxidant, antiinflammatory, and antidiabetic properties of legume seed protein hydrolysates. Food Hydrocolloids for Health, 2024, vol. 5, art. ID 100175. https://doi.org/10.1016/j.fhfh.2023.100175
3. Hou Y., Wu Z., Dai Z., Wang G., Wu G. Protein hydrolysates in animal nutrition: industrial production, bioactive peptides, and functional significance. Journal of Animal Science and Biotechnology, 2017, vol. 8, art. ID 24. https://doi.org/10.1186/s40104-017-0153-9
4. Egorov I. A., Egorova T. V., Laptev G. Yu., Novikova N. I., Nikonov I. N., Il’ina L. A. The influence of unconventional protein sources on meat productivity and intestinal microflora in broilers. Ptitsevodstvo = Aviculture, 2014, no. 11, pp. 2–6 (in Russian).
5. Yang H., Bian Y., Huang L., Lan Q., Ma L., Li X., Leng X. Effects of replacing fish meal with fermented soybean meal on the growth performance, intestinal microbiota, morphology and disease resistance of largemouth bass (Micropterus salmoides). Aquaculture Reports, 2022, vol. 22, art. ID 100954. https://doi.org/10.1016/j.aqrep.2021.100954
6. Milentyeva I. S., Davydenko N. I., Rasshchepkin A. N. Casein proteolysis in bioactive peptide production: optimal operating parameters. Tekhnika i tekhnologiya pishchevykh proizvodstv = Food Processing: Techniques and Technology, 2020, vol. 50, no. 4, pp. 726–735 (in Russian). https://doi.org/10.21603/2074-9414-2020-4-726-735
7. Semenova E. S., Simonenko E. S., Simonenko S. V., Zorin S. N., Petrov N. A., Mazo V. K. Study of parameters of milk proteins hydrolysis with the help of Russian-produced enzyme preparations. Pishchevye sistemy = Food Systems, 2023, vol. 6, no. 2, pp. 224–232 (in Russian). https://doi.org/10.21323/2618-9771-2023-6-2-224-232
8. Prosekov A. U., Kurbanova M. G. Analysis of the composition and properties of milk proteins for use in various branches of the food industry. Tekhnika i tekhnologiya pishchevykh proizvodstv = Food Processing: Techniques and Technology, 2009, vol. 15, no. 4, pp. 68a–71 (in Russian).
9. Plotnikova I. V., Shentsova E. S., Polyanskii K. K., Pisarevskii D. S. Chemical composition and technological properties of various types of whey. Syrodelie i maslodelie = Cheese and buttermaking, 2020, no. 3, pp. 43–45 (in Russian). https://doi.org/10.31515/2073-4018-2020-3-43-45
10. Kostyleva E. V., Sereda A. S., Velikoretskaya I. A., Kurbatova E. I., Tsurikova N. V. Proteases for obtaining of food protein hydrolysates from proteinaceous by-products. Voprosy pitaniya = Problems of Nutrition, 2023, vol. 92, no. 1, pp. 116–132 (in Russian). https://doi.org/10.33029/0042-8833-2023-92-1-116-132
11. Golovach T. N., Kurchenko V. P. Hydrolysis of milk proteins by enzyme preparations and proteolytic systems of lactic acid bacteria. Trudy BGU. Seriya: Fiziologicheskie, biokhimicheskie i molekulyarnye osnovy funktsionirovaniya biosistem = Proceedings of the BSU. Series of Physiological, Biochemical and Molecular Biology Sciences, 2012, vol. 7, no. 1–2, pp. 106–126 (in Russian).
12. Koroleva O. V., Agarkova E. Yu., Botina S. G., Nikolaev I. V., Ponomareva N. V., Mel’nikova E. I., Kharitonov V. D., Prosekov A. Yu., Krokhmal’ M. V., Rozhkova I. V. Prospects for the use of whey protein hydrolysates in fermented milk product technology. Molochnaya promyshlennost’ = Dairy Industry, 2013, no. 7, pp. 66–68 (in Russian).
13. Rutherfurd S. M. Methodology for determining degree of hydrolysis of proteins in hydrolysates: a review. Journal of AOAC International, 2010, vol. 93, no. 5, pp. 1515–1522. https://doi.org/10.1093/jaoac/93.5.1515
14. Butre C. I., Wierenga P. A., Gruppen H. Influence of water availability on the enzymatic hydrolysis of proteins. Process Biochemistry, 2014, vol. 49, no. 11, pp. 1903–1912. https://doi.org/10.1016/j.procbio.2014.08.009
15. Rao P. S., Bajaj R., Mann B. Impact of sequential enzymatic hydrolysis on antioxidant activity and peptide profile of casein hydrolysate. Journal of Food Science and Technology, 2020, vol. 57, no. 12, pp. 4562–4575. https://doi.org/10.1007/s13197-020-04495-2
16. Whitaker J. R., Voragen A. G. J., Wong D. W. S. Handbook of Food Enzymology. Boca Raton, CRC Press, 2002. 1128 p. https://doi.org/10.1201/9780203910450
17. Ono S., Murai J., Furuta S., Doike K., Manzaki F., Yoshimura T., Kuroda H., Umezaki M., Oyama H. Covalent chromatography for chymotrypsin-like proteases using a diphenyl 1-amino-2-phenylethylphosphonate derivative. Journal of Biological Macromolecules, 2013, vol. 13, no. 3, pp. 78–85. https://doi.org/10.14533/jbm.13.78
18. Sokolov D. V., Bolkhonov B. A., Zhamsaranova S. D., Lebedeva S. N., Bazhenova B. A. Enzymatic hydrolysis of soy protein. Tekhnika i tekhnologiya pishchevykh proizvodstv = Food Processing: Techniques and Technology, 2023, vol. 53, no. 1, pp. 86–96 (in Russian). https://doi.org/10.21603/2074-9414-2023-1-2418
19. Pankova S. M., Sakibaev F. A., Holyavka M. G., Vyshkvorkina Y. M., Lukin A. N., Artyukhov V. G. Studies of the processes of the trypsin interactions with ion exchange fibers and chitosan. Russian Journal of Bioorganic Chemistry, 2021, vol. 47, pp. 765–776 (in Russian). https://doi.org/10.1134/s1068162021030146
20. Patil U., Baloch K. A., Nile S. H., Kim J. T., Benjakul S. Trypsin from pyloric caeca of Asian seabass: purification, characterization, and its use in the hydrolysis of acid-soluble collagen. Foods, 2023, vol. 12, art. ID 2937. https://doi.org/10.3390/foods12152937
21. Min J. H., Lee Y. J., Kang H. J., Moon N. R., Park Y. K., Joo S. T., Jung Y. H. Characterization of yeast protein hydrolysate for potential application as a feed additive. Food Science of Animal Resources, 2024, vol. 44, no. 3, pp. 723–737. https://doi.org/10.5851/kosfa.2024.e33