Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

The effect of the electrolyte redox potential on photoelectrochemical properties of bismuth oxoiodide

Abstract

Photoelectrochemical behavior of semiconductor bismuth oxoiodide BiOI in solutions containing [Fe(CN)6]3-/[Fe(CN)6]4-or I3-/I- redox system has been studied. The effect of photocurrent sign inversion with the electrode potential change has been observed. It has been shown that this effect is governed by both thermodynamic conditions (shifting of the conduction band position and equilibrium potential EOx/Red) and by kinetic factor (the capture rate of photogenerated charged particles by oxidizing or reducing agents). Photoelectrochemical reactions are diffusion-controlled, and photocurrent is a function of the surface concentrations of oxidized and reduced forms of the redox system. Specific structure of BiOI coating consisting of thin plate-like crystallites (40-60 nm thick) provides good contact of its surface with the reaction medium and high efficiency of photoinduced processes.

About the Authors

M. E. Kozyrevich
Белорусский государственный университет
Belarus


M. V. Malashchonak
Белорусский государственный университет
Belarus


E. A. Streltsov
Белорусский государственный университет
Belarus


A. V. Mazanik
Белорусский государственный университет
Belarus


A. I. Kulak
Институт общей и неорганической химии НАН Беларуси
Belarus


References

1. Xiao X., Zhang W. D. // J. Mater. Chem. 2010. Vol. 20. P. 5866-5870.

2. Cheng H., Huang В., Dai Y. // Nanoscale. 2014. Vol. 6. P. 2009-2026.

3. Liu H., Cao W. R., Su Y., Chen Z., Wang Y. // J. Coll. Interface Science. 2013. Vol. 398. P. 161-167.

4. Poznyak S. K., Kulak A. I. // Electrochim. Acta. 1990. Vol. 35. P. 1941-1947.

5. Zhao K., Zhang Xi, Zhang L. // Electrochem. Commun. 2009. Vol. 11. P. 612-615.

6. Wang K., Jia F., Zhang L. // Mater. Letters. 2013. Vol. 92. P. 354-357.

7. Henle J., Simon P., Frenzel A, Scholz S., Kaskel S. // Chem. Mater. 2007. Vol. 19. P. 366-373.

8. Kwolek P., Szacilowski K. // Electrochim. Acta. 2013. Vol. 104. P. 448-453.

9. Sprunken H. R., Schumacher R., Schindler R. N. // Ber. Bunsenges. Phys. Chem. 1980. Vol. 84. P. 1040-1045.

10. Кулак А. И., Свиридов В. В., Позняк С. К., Макута И. Д., Стрельцов Е. А. // Весці АН БССР. Сер. хiм. навук. 1987. № 4. С. 24-31.

11. Podborska A., Gawel В., Pietrzak L., Szymanska I. B., Jeszka J. K., Lasocha W., Szacilowski K. // J. Phys. Chem. C. 2009. Vol. 13. P. 6774-6784.

12. Long M., Beranek R., Cai W., Kisch H. // Electrochim. Acta. 2008. Vol. 53. P. 4621-4626.

13. McDonald K. J., Choi K. S. // Energy Environ. Sci. 2012. Vol. 5. P. 8553-8557.

14. PDF № 10-445.

15. PDF № 41-1445.

16. Hodes G., Howell I. D. J., Peter L. M. // J. Electrochem. Soc. 1992. Vol. 139. P. 3136-3140.


Review

Views: 489


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)