Preview

Известия Национальной академии наук Беларуси. Серия химических наук

Расширенный поиск

ТЕРМИЧЕСКОЕ РАСШИРЕНИЕ, ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ И КИСЛОРОДНАЯ НЕСТЕХИОМЕТРИЯ НИКЕЛАТОВ La2-xSrxNiO4-δ КАК ПОТЕНЦИАЛЬНЫХ КАТОДНЫХ МАТЕРИАЛОВ TОТЭ

Об авторах

Е. С. Кравченко
Белорусский государственный университет, СИСЕКО – Авейровский институт материалов,Стокгольмский университет
Россия
магистр хим. наук, аспирант хим. фак.


К. В. Захарчук
СИСЕКО – Авейровский институт материалов
Россия
науч. сотрудник


А. А. Яремченко
СИСЕКО – Авейровский институт материалов
Россия
канд. хим. наук, гл. науч. сотрудник


Е. Гринс
Стокгольмский университет
Россия
канд. хим. наук, науч. сотрудник


Г. Свенссон
Стокгольмский университет
Россия
д-р хим. наук, проф., декан


В. В. Паньков
Белорусский государственный университет
Россия
д-р хим. наук, проф., зав. кафедрой «Физическая химия».


Е. Г. Петрова
Белорусский государственный университет
Россия
магистр хим. наук, аспирант хим. фак.


Список литературы

1. Appleby, A. J. Fuel cell technology: Status and future prospects / A. J. Appleby // Energy. – 1996. – Vol. 21. – P. 521–653.

2. Kordesch, K. V. Environmental Impact of Fuel Cell Technology / K. V. Kordesch, G. R. Simader // Chem. Rev. – 1995. – Vol. 95. – P. 191–207.

3. Minh, N. Solid oxide fuel cell technology – features and applications / N. Minh // Solid State Ionics. – 2004. – Vol. 174. – P. 271–277.

4. Ralphz, J. M. Materials for lower temperature solid oxide fuel cells / J. M. Ralphz, A. C. Schoeler, M. Krumpelt // J. of materials science. – 2001. – Vol. 36. – P. 1161–1172.

5. Intermediate temperature solid oxide fuel cells / D. J. Brett [et al.] // Chem. Soc. Rev. – 2008. – Vol. 37. – P. 1568–1578.

6. Wachsman, E. D. Lowering the temperature of solid oxide fuel cells / E. D. Wachsman, K. T. Lee // Science. – 2011. – Vol. 334. – P. 935–939.

7. Sammes, N. Phosphoric acid fuel cells: fundamentals and applications / N. Sammes, R. Bove, K. Stahl // Curr. Opin. Solid State Mater. Sci. – 2004. – Vol. 8. – P. 372–378.

8. Brian, C. H. Materials for fuel-cell technologies / C. H. Brian, A. Heinzel // Nature. – 2001. – Vol. 414. – P. 345–352.

9. Wachsman, E. Low-Temperature Solid-Oxide Fuel Cells / E. Wachsman, T. Ishihara, J. Kilner // MRS Bull. – 2014. – Vol. 39. – P. 773–779.

10. Performance of perovskite-related oxide cathodes in contact with lanthanum silicate electrolyte / A. A. Yaremchenko [et al.] // Solid State Ionics. – 2009. – Vol. 180. – P. 878–885.

11. Solid Oxide Fuel Cells: From Materials to System Modeling / Y. Wang [et al.] // The Royal Society of Chemistry, London, UK. – 2013. – Ch. 3. – P. 56–88.

12. Solid Oxide Fuel Cells: Materials Properties and Performance / J. Fergus [et al.] // CRC Press, Boca Raton, U. S. – 2013. – P. 54.

13. Skinner, S. J. Oxygen diffusion and surface exchange in La2-xSrxNiO4+d / S. J. Skinner, J. A. Kilner // Solid State Ionics. – 2000. – Vol. 135. – P. 709–712.

14. Tsipis, E. V. Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. III. Recent trendsand selected methodological aspects / E. V. Tsipis, V. V. Kharton // J. Solid State Electrochem. – 2011. – Vol.15. – P. 1007–1040.

15. Preparation and electrochemical properties of Sr-doped Nd2NiO4 cathode materials for intermediate-temperature solidoxide fuel cells / L-P. Sun [et al.] // J. of Power Sources. – 2008. – Vol. 183. – P. 43–48.

16. Progress in material selection for solid oxide fuel cell technology: A review / N. Mahato [et al.] // Progress in Materials Science. – 2015. – Vol. 72. – P. 141–337.

17. Makhnach, L. V. High-temperature oxygen non-stoichiometry, conductivity and structure in strontium-rich nickelatesLa2-xSrxNiO4-δ (x = 1 and 1,4) / L. V. Makhnach, V. V. Pankov, P. Strobel // Materials Chemistry and Physics. – 2008. – Vol. 111. – P. 125–130.

18. Composition and conductivity of some nickelates / V. V. Vashook [et al.] // Solid State Ionics. – 1999. – Vol. 119. – P. 23–30.

19. Crystal chemistry and physical properties of La2−xSrxNiO4 (0 ≤ x ≤ 1,6) / Y. Takeda [et al.] // Materials ResearchBulletin. – 1990. – Vol. 25. – P. 293–306.

20. Hayashi, H. Thermal expansion of Sr- and Mg-doped LaGaO3 / H. Hayashi, M. Suzuki, H. Inaba // Solid State Ionics. –2000. – Vol. 128. – P. 131–139.

21. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFCcathodes / H. Ullmann [et al.] // Solid State Ionics. – 2000. – Vol. 138. – P. 79–90.

22. Tietz, F. Thermal expansion of SOFC materials / F. Tietz // Ionics. – 1999. – Vol. 5. – P. 129–139.

23. Tai, L. Thermochemical stability, electrical conductivity, and seebeck coefficient of Sr-doped LaCo0,2Fe0,8O3-δ / L. Tai, M. M. Nasrallah , H. U. Anderson // J. of Solid State Chemistry. – 1995. – Vol. 118. – P. 117–124.

24. High-temperature characterization of oxygen-deficient K2NiF4-type Nd2-xSrxNiO4-δ (x = 1,0–1,6) for potential SOFC /SOEC applications / E. Kravchenko [et al.] // J. Mater. Chem. A. – 2015. – Vol. 3. – P. 23852–23863.

25. Effect of Sr content on the crystal structure and electrical properties of the system La2-xSrxNiO4+δ (0 < x < 1) / A. Aguadero[et al.] // Dalton Trans. – 2006. – P. 4377–4383.

26. Preparation and electrochemical properties of strontium doped Pr2NiO4 cathode materials for intermediate-temperature solid oxide fuel cells / J. Yang [et al.] // International journal of hydrogen energy. – 2012. – Vol. 37. – P. 1746–1751.

27. Electrical conductivity, Seebeck coefficient, and defect structure of oxygen nonstoichiometric Nd2−xSrxNiO4+δ / T. Nakamura [et al.] // Materials Chemistry and Physics. – 2010. – Vol. 122. – P. 250–258.

28. Advanced anodes for high-temperature fuel cells / A. Atkinson [et al.] // Nature Materials. – 2004. – Vol. 3. – P. 17–27.

29. Oxygen diffusion and transport properties in non-stoichiometric Ln2-xNiO4+δ oxides / E. Boehm [et al.] // Solid StateIonics. 2005. – Vol. 176. – P. 2717–2725.


Рецензия

Просмотров: 576


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)