Preview

Известия Национальной академии наук Беларуси. Серия химических наук

Пашыраны пошук

ТЕРМИЧЕСКОЕ РАСШИРЕНИЕ, ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ И КИСЛОРОДНАЯ НЕСТЕХИОМЕТРИЯ НИКЕЛАТОВ La2-xSrxNiO4-δ КАК ПОТЕНЦИАЛЬНЫХ КАТОДНЫХ МАТЕРИАЛОВ TОТЭ

Анатацыя

Оксиды системы La2-xSrxNiO4-δ (x = 1,0–1,6) были исследованы в качестве  потенциальных катодных материалов для твердооксидных топливных элементов. Были изучены структурная стабильность, кислородная нестехиометрия и электрическая  проводимость. Установлено, что все оксиды сохраняют кристаллическую структуру типа K2NiF4 в окислительных условиях в температурной области 25–900 °С. Оксиды данной системы являются дефицитными по кислороду при температурах выше 500 °С, и  кислородная нестехиометрия повышается с ростом температуры и увеличением содержания стронция. Исследованные никелаты обладают псевдометаллической электропроводностью p-типа в окислительных условиях при температурах 500–1000 °С. Наибольшая электрическая проводимость характерна для La0,8Sr1,2NiO4-δ (220 См/см при 900 °С и 440 См/см при 600 °С). Методом высокотемпературной рентгеновской дифракции установлено, что никелаты La2-xSrxNiO4-δ проявляют анизотропное термическое расширение кристаллической решетки, однако объемное термическое расширение носит практически линейную зависимость от температуры; значения линейных коэффициентов термического расширения составляют (14,2–15,6) · 10-6 K-1.

Аб аўтарах

Е. Кравченко
Белорусский государственный университет, СИСЕКО – Авейровский институт материалов,Стокгольмский университет
Расія


К. Захарчук
СИСЕКО – Авейровский институт материалов
Расія


А. Яремченко
СИСЕКО – Авейровский институт материалов
Расія


Е. Гринс
Стокгольмский университет
Расія


Г. Свенссон
Стокгольмский университет
Расія


В. Паньков
Белорусский государственный университет
Расія


Е. Петрова
Белорусский государственный университет
Расія


Спіс літаратуры

1. Appleby, A. J. Fuel cell technology: Status and future prospects / A. J. Appleby // Energy. – 1996. – Vol. 21. – P. 521–653.

2. Kordesch, K. V. Environmental Impact of Fuel Cell Technology / K. V. Kordesch, G. R. Simader // Chem. Rev. – 1995. – Vol. 95. – P. 191–207.

3. Minh, N. Solid oxide fuel cell technology – features and applications / N. Minh // Solid State Ionics. – 2004. – Vol. 174. – P. 271–277.

4. Ralphz, J. M. Materials for lower temperature solid oxide fuel cells / J. M. Ralphz, A. C. Schoeler, M. Krumpelt // J. of materials science. – 2001. – Vol. 36. – P. 1161–1172.

5. Intermediate temperature solid oxide fuel cells / D. J. Brett [et al.] // Chem. Soc. Rev. – 2008. – Vol. 37. – P. 1568–1578.

6. Wachsman, E. D. Lowering the temperature of solid oxide fuel cells / E. D. Wachsman, K. T. Lee // Science. – 2011. – Vol. 334. – P. 935–939.

7. Sammes, N. Phosphoric acid fuel cells: fundamentals and applications / N. Sammes, R. Bove, K. Stahl // Curr. Opin. Solid State Mater. Sci. – 2004. – Vol. 8. – P. 372–378.

8. Brian, C. H. Materials for fuel-cell technologies / C. H. Brian, A. Heinzel // Nature. – 2001. – Vol. 414. – P. 345–352.

9. Wachsman, E. Low-Temperature Solid-Oxide Fuel Cells / E. Wachsman, T. Ishihara, J. Kilner // MRS Bull. – 2014. – Vol. 39. – P. 773–779.

10. Performance of perovskite-related oxide cathodes in contact with lanthanum silicate electrolyte / A. A. Yaremchenko [et al.] // Solid State Ionics. – 2009. – Vol. 180. – P. 878–885.

11. Solid Oxide Fuel Cells: From Materials to System Modeling / Y. Wang [et al.] // The Royal Society of Chemistry, London, UK. – 2013. – Ch. 3. – P. 56–88.

12. Solid Oxide Fuel Cells: Materials Properties and Performance / J. Fergus [et al.] // CRC Press, Boca Raton, U. S. – 2013. – P. 54.

13. Skinner, S. J. Oxygen diffusion and surface exchange in La2-xSrxNiO4+d / S. J. Skinner, J. A. Kilner // Solid State Ionics. – 2000. – Vol. 135. – P. 709–712.

14. Tsipis, E. V. Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. III. Recent trendsand selected methodological aspects / E. V. Tsipis, V. V. Kharton // J. Solid State Electrochem. – 2011. – Vol.15. – P. 1007–1040.

15. Preparation and electrochemical properties of Sr-doped Nd2NiO4 cathode materials for intermediate-temperature solidoxide fuel cells / L-P. Sun [et al.] // J. of Power Sources. – 2008. – Vol. 183. – P. 43–48.

16. Progress in material selection for solid oxide fuel cell technology: A review / N. Mahato [et al.] // Progress in Materials Science. – 2015. – Vol. 72. – P. 141–337.

17. Makhnach, L. V. High-temperature oxygen non-stoichiometry, conductivity and structure in strontium-rich nickelatesLa2-xSrxNiO4-δ (x = 1 and 1,4) / L. V. Makhnach, V. V. Pankov, P. Strobel // Materials Chemistry and Physics. – 2008. – Vol. 111. – P. 125–130.

18. Composition and conductivity of some nickelates / V. V. Vashook [et al.] // Solid State Ionics. – 1999. – Vol. 119. – P. 23–30.

19. Crystal chemistry and physical properties of La2−xSrxNiO4 (0 ≤ x ≤ 1,6) / Y. Takeda [et al.] // Materials ResearchBulletin. – 1990. – Vol. 25. – P. 293–306.

20. Hayashi, H. Thermal expansion of Sr- and Mg-doped LaGaO3 / H. Hayashi, M. Suzuki, H. Inaba // Solid State Ionics. –2000. – Vol. 128. – P. 131–139.

21. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFCcathodes / H. Ullmann [et al.] // Solid State Ionics. – 2000. – Vol. 138. – P. 79–90.

22. Tietz, F. Thermal expansion of SOFC materials / F. Tietz // Ionics. – 1999. – Vol. 5. – P. 129–139.

23. Tai, L. Thermochemical stability, electrical conductivity, and seebeck coefficient of Sr-doped LaCo0,2Fe0,8O3-δ / L. Tai, M. M. Nasrallah , H. U. Anderson // J. of Solid State Chemistry. – 1995. – Vol. 118. – P. 117–124.

24. High-temperature characterization of oxygen-deficient K2NiF4-type Nd2-xSrxNiO4-δ (x = 1,0–1,6) for potential SOFC /SOEC applications / E. Kravchenko [et al.] // J. Mater. Chem. A. – 2015. – Vol. 3. – P. 23852–23863.

25. Effect of Sr content on the crystal structure and electrical properties of the system La2-xSrxNiO4+δ (0 < x < 1) / A. Aguadero[et al.] // Dalton Trans. – 2006. – P. 4377–4383.

26. Preparation and electrochemical properties of strontium doped Pr2NiO4 cathode materials for intermediate-temperature solid oxide fuel cells / J. Yang [et al.] // International journal of hydrogen energy. – 2012. – Vol. 37. – P. 1746–1751.

27. Electrical conductivity, Seebeck coefficient, and defect structure of oxygen nonstoichiometric Nd2−xSrxNiO4+δ / T. Nakamura [et al.] // Materials Chemistry and Physics. – 2010. – Vol. 122. – P. 250–258.

28. Advanced anodes for high-temperature fuel cells / A. Atkinson [et al.] // Nature Materials. – 2004. – Vol. 3. – P. 17–27.

29. Oxygen diffusion and transport properties in non-stoichiometric Ln2-xNiO4+δ oxides / E. Boehm [et al.] // Solid StateIonics. 2005. – Vol. 176. – P. 2717–2725.


##reviewer.review.form##

Праглядаў: 660


Creative Commons License
Кантэнт даступны пад ліцэнзіяй Creative Commons Attribution 3.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)