Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

PHAGE DISPLAY IN ENGINEERING OF ANTIBODIES WITH DESIRED PROPERTIES

Abstract

Antibodies are an essential tool being a part of immunodiagnostics, therapeutics and life science research instruments. In this paper we analyze the recent developments in recombinant antibodies generation by means of phage display technology. We also provide our own results dedicated to antibodies development process. Analysis of antibody-antigen complexes with resolved structures allow to create synthetic phage display library of Fab antibody fragments with the diversity of 1010 independent clones. Utilizing a negative selection approach, we succeeded in generation and characterization of specific single-domain antibodies that has substantially different binding kinetics to CYP11B2 and CYP11B1 isoenzymes – proteins with 93% sequence identity. We also generated specific binders to a few high-molecular weight human antigens – erytropoetin, growth hormone and thyroperoxidase.

About the Authors

D. O. Dormeshkin
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus
Researcher


E. A. Brichko
Belarusian State University
Belarus
Student


A. A. Gilep
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus
Ph.D. (Chemistry), Head of the Department of molecular biotechnologies


S. A. Usanov
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus
Corr. Member of the National Academy of Sciences, D. Sc. (Chemistry), Professor


References

1. Burden R. E., Caswell J., Fay F., Scott C. J., “Recent advances in the application of antibodies as therapeutics”, Future Medicinal Chemistry, 2012, vol. 4, no. 1, pp. 73–86.

2. Borrebaeck C. A., “Antibodies in diagnostics - from immunoassays to protein chips”, Immunology Today, 2000, vol. 21, no. 8, pp. 379–382.

3. Rodgers K. R., Chou R. C., “Therapeutic monoclonal antibodies and derivatives: Historical perspectives and future directions”, Biotechnology Advances, 2016, vol. 34, no. 6, pp. 1149–1158.

4. Ecker D. M., Jones S. D., Levine H. L., “The therapeutic monoclonal antibody market”, MAbs, 2015, vol. 7, no. 1, pp. 9–14.

5. Asplund A., Edqvist P. H., Schwenk J. M., Ponten F., “Antibodies for profiling the human proteome-The Human Protein Atlas as a resource for cancer research”, Proteomics, 2012, vol. 12, no. 13, pp. 2067–2077.

6. Uhlen M., Oksvold P., Fagerberg L., Lundberg E., Jonasson K., Forsberg M., Zwahlen M., Kampf C., Wester K., Hober S., Wernerus H., Bjorling L., Ponten F., “Towards a knowledge-based Human Protein Atlas”, Nature Biotechnology, 2010, vol. 28, no. 12, pp. 1248–1250.

7. Buchner J., Rudolph R., “Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli”, Biotechnology (N Y), 1991, vol. 9, no. 2, pp. 157–162.

8. Rousseaux, J., Rousseaux-Prevost R., Bazin H., “Optimal conditions for the preparation of Fab and F(ab’)2 fragments from monoclonal IgG of different rat IgG subclasses”, Journal of Immunological Methods, 1983, vol. 64, no. 1–2, pp. 141–146.

9. Gaudreault J., Fei D., Rusit J., Suboc P., Shiu V., “Preclinical pharmacokinetics of Ranibizumab (rhuFabV2) after a single intravitreal administration”, Investigative Ophthalmology & Visual Science, 2005, vol. 46, no. 2, pp. 726–733.

10. Bird R. E., Hardman K. D., Jacobson J. W., Johnson S., Kaufman B. M., Lee S. M., Lee T., Pope S. H., Riordan G. S., Whitlow M., “Single-chain antigen-binding proteins”, Science, 1988, vol. 242, no. 4877, pp. 423–426.

11. Sokolova E. A., Stremovskiy O. A., Zdobnova T. A., Balalaeva I. V., Deyev S. M., “Recombinant Immunotoxin 4D5scFv-PE40 for Targeted Therapy of HER2-Positive Tumors”, Acta Naturae, 2015, vol. 7, no. 4, pp. 93–96.

12. Albertini M. R., Hank J. A., Schiller J. H., Khorsand M., Borchert A. A., Gan J., Bechhofer R., Storer B., Reisfeld R. A., Sondel P. M., “Phase IB trial of chimeric antidisialoganglioside antibody plus interleukin 2 for melanoma patients”, Clinical Cancer Research, 1997, vol. 3, no. 8, pp. 1277–1288.

13. Vial T., Descotes J., “Immune-mediated side-effects of cytokines in humans”, Toxicology, 1995, vol. 105, no. 1, pp. 31–57.

14. Heuser C., Ganser M., Hombach A., Brand H., Denton G., Hanisch F. G., Abken H., “An anti-MUC1-antibody-interleukin-2 fusion protein that activates resting NK cells to lysis of MUC1-positive tumour cells”, British Journal of Cancer, 2003, vol. 89, no. 6, pp. 1130–1139.

15. Penichet M. L., Harvill E. T., Morrison S. L., “An IgG3-IL-2 fusion protein recognizing a murine B cell lymphoma exhibits effective tumor imaging and antitumor activity”, Journal of Interferon & Cytokine Research, 1998, vol. 18, no. 8, pp. 597–607.

16. Clementschitsch F., Bayer K., “Improvement of bioprocess monitoring: development of novel concepts”, Microbial Cell Factories, 2006, no. 5, p. 19.

17. Dormeshkin D., Gilep A., Sergeev G., Usanov S., “Development of CYB5-fusion monitoring system for efficient periplasmic expression of multimeric proteins in Escherichia coli”, Protein expression and purification, 2016, vol. 128, pp. 60–66.

18. Spinelli S., Frenken L., Bourgeois D., de Ron L., Bos W., Verrips T., Anguille C., Cambillau C., Tegoni M., “The crystal structure of a llama heavy chain variable domain”, Nature Structural Biology, 1996, vol. 3, no. 9, pp. 752–757.

19. Zielonka S., Empting M., Grzeschik J., Konning D., Barelle C.J., Kolmar H., “Structural insights and biomedical potential of IgNAR scaffolds from sharks”, MAbs, 2015, vol. 7, no. 1, pp. 15–25.

20. Rouet R., Dudgeon K., Christ D., “Generation of human single domain antibody repertoires by Kunkel mutagenesis”, Methods in Molecular Biology, 2012, vol. 907, pp. 195–209.

21. De Vos J., Devoogdt N., Lahoutte T., Muyldermans S., “Camelid single-domain antibody-fragment engineering for (pre)clinical in vivo molecular imaging applications: adjusting the bullet to its target”, Expert opinion on biological therapy, 2013, vol. 13, no. 8, pp. 1149–1160.

22. Van Roy M., Ververken C., Beirnaert E., Hoefman S., Kolkman J., Vierboom M., Breedveld E., t Hart B., Poelmans S., Bontinck L., Hemeryck A., Jacobs S., Baumeister J., Ulrichts H., “The preclinical pharmacology of the high affinity anti-IL-6R Nanobody(R) ALX-0061 supports its clinical development in rheumatoid arthritis”, Arthritis research & therapy, 2015, vol. 17, p. 135.

23. Holz J. B., “The TITAN trial--assessing the efficacy and safety of an anti-von Willebrand factor Nanobody in patients with acquired thrombotic thrombocytopenic purpura”, Transfusion and apheresis science, 2012, vol. 46, no. 3, pp. 343–346.

24. Detalle L., Stohr T., Palomo C., Piedra P.A., Gilbert B.E., Mas V., Millar A., Power U.F., Stortelers C., Allosery K., Melero J.A., Depla E., “Generation and Characterization of ALX-0171, a Potent Novel Therapeutic Nanobody for the Treatment of Respiratory Syncytial Virus Infection”, Antimicrobial Agents and Chemotherapy, 2015, vol. 60, no. 1, pp. 6–13.

25. Rousserie G., Grinevich R., Brazhnik K., Even-Desrumeaux K., Reveil B., Tabary T., Chames P., Baty D., Cohen J. H., Nabiev I., Sukhanova A., “Detection of carcinoembryonic antigen using single-domain or full-size antibodies stained with quantum dot conjugates”, Analytical Biochemistry, 2015, vol. 478, pp. 26–32.

26. Schroeder K. L., Goreham R. V., Nann T., “Graphene Quantum Dots for Theranostics and Bioimaging”, Pharmaceutical Research, 2016, vol. 33, no. 10, pp. 2337–2357.

27. Ferrer M., Maiolo J., Kratz P., Jackowski J. L., Murphy D. J., Delagrave S., Inglese J., “Directed evolution of PDZ variants to generate high-affinity detection reagents”, Protein Engineering Design and Selection, 2005, vol. 18, no. 4, pp. 165–173.

28. Hosse R. J., Rothe A., Power B. E., “A new generation of protein display scaffolds for molecular recognition”, Protein Science, 2006, vol. 15, no. 1, pp. 14–27.

29. Sedgwick S. G., Smerdon S. J., “The ankyrin repeat: a diversity of interactions on a common structural framework”, Trends in biochemical sciences, 1999, vol. 24, no. 8, pp. 311–316.

30. Friedman M., Orlova A., Johansson E., Eriksson T. L., Hoiden-Guthenberg I., Tolmachev V., Nilsson F. Y., Stahl S., “Directed evolution to low nanomolar affinity of a tumor-targeting epidermal growth factor receptor-binding affibody molecule”, Journal of Molecular Biology, 2008, vol. 376, no. 5, pp. 1388–1402.

31. Kohler G., Milstein C., “Continuous cultures of fused cells secreting antibody of predefined specificity”, Nature, 1975, vol. 256, no. 5517, pp. 495–497.

32. Ruberti F., Bradbury A., Cattaneo A., “Cloning and expression of an anti-nerve growth factor (NGF) antibody for studies using the neuroantibody approach”, Cellular and Molecular Neurobiology, 1993, vol. 13, no. 5, pp. 559–568.

33. Nicholls P. J., Johnson V. G., Blanford M. D., Andrew S. M., “An improved method for generating single-chain antibodies from hybridomas”, Journal of Immunological Methods, 1993, vol. 165, no. 1, pp. 81–91.

34. Luo L., Luo Q., Guo L., Lv M., Lin Z., Geng J., Li X., Li Y., Shen B., Qiao C., Feng J., “Structure-based affinity matu- ration of a chimeric anti-ricin antibody C4C13”, Journal Of Biomolecular Structure & Dynamics, 2014, vol. 32, no. 3, pp. 416–423.

35. Ikonomova S. P., He Z., Karlsson A. J., “A simple and robust approach to immobilization of antibody fragments”, Journal of Immunological Methods, 2016, vol. 435, pp. 7–16.

36. Toleikis L., Frenzel A., “Cloning single-chain antibody fragments (ScFv) from hyrbidoma cells”, Methods in Molecular Biology, 2012, vol. 907, pp. 59–71.

37. Dormeshkin D. O., Svirid A. V., Gilep A. A., Sciridov O. V., Usanov S. A., “Generation and characterization of biotinylated recombinant Fab antibody fragment against cortisol”, Russian Journal of Bioorganic Chemistry, 2016, vol. 42, no. 1, p. 7.

38. Tomita M., Tsumoto K., “Hybridoma technologies for antibody production”, Immunotherapy, 2011, vol. 3, no. 3, pp. 371–380.

39. Smith G. P., “Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface”, Science, 1985, vol. 228, no. 4705, pp. 1315–1317.

40. Bradbury A. R., Sidhu S., Dubel S., McCafferty J., “Beyond natural antibodies: the power of in vitro display technologies”, Nature Biotechnology, 2011, vol. 29, no. 3, pp. 245–254.

41. Schofield D. J., Pope A. R., Clementel V., Buckell J., Chapple S., Clarke K. F., Conquer J. S., Crofts A. M., Crowther S. R., Dyson M. R., Flack G., Griffin G. J., Hooks Y., Howat W. J., Kolb-Kokocinski A., Kunze S., Martin C. D., Maslen G. L., Mitchell J. N., O’Sullivan M., Perera R. L., Roake W., Shadbolt S. P., Vincent K. J., Warford A., Wilson W. E., Xie J., Young J. L., McCafferty J., “Application of phage display to high throughput antibody generation and characterization”, Genome Biology, 2007, vol. 8, no. 11, p. R254.

42. Carmen S., Jermutus L., “Concepts in antibody phage display”, Briefings in Functional Genomics and Proteomics, 2002, vol. 1, no. 2, pp. 189–203.

43. Jez J., Antes B., Castilho A., Kainer M., Wiederkum S., Grass J., Ruker F., “Woisetschlager M., Steinkellner H. Significant impact of single N-glycan residues on the biological activity of Fc-based antibody-like fragments”, Journal of Biological Chemistry, 2012, vol. 287, no. 29, pp. 24313–24319.

44. Watkins N. A., Ouwehand W. H., “Introduction to antibody engineering and phage display”, Vox Sanguinis, 2000, vol. 78, no. 2, pp. 72–79.

45. Griffiths A. D., Duncan A. R., “Strategies for selection of antibodies by phage display”, Current opinion in biotechnology, 1998, vol. 9, no. 1, pp. 102–108.

46. Clackson T., Hoogenboom H. R., Griffiths A. D., Winter G., “Making antibody fragments using phage display libraries”, Nature, 1991, vol. 352, no. 6336, pp. 624–628.

47. Sok D., Burton D. R., “HIV Broadly Neutralizing Antibodies: Taking Good Care Of The 98”, Immunity, 2016, vol. 45, no. 5, pp. 958–960.

48. Zampieri S., Mahler M., Bluthner M., Qiu Z., Malmegrim K., Ghirardello A., Doria A., van Venrooij W. J., Raats J. M., “Recombinant anti-P protein autoantibodies isolated from a human autoimmune library: reactivity, specificity and epitope recognition”, Cellular and Molecular Life Sciences, 2003, vol. 60, no. 3, pp. 588–598.

49. Hoogenboom H. R., Winter G., “By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro”, Journal of Molecular Biology, 1992, vol. 227, no. 2, pp. 381–388.

50. Knappik A., Ge L., Honegger A., Pack P., Fischer M., Wellnhofer G., Hoess A., Wolle J., Pluckthun A., Virnekas B., “Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs ran-domized with trinucleotides”, Journal of Molecular Biology, 2000, vol. 296, no. 1, pp. 57–86.

51. Tiller T., Schuster I., Deppe D., Siegers K., Strohner R., Herrmann T., Berenguer M., Poujol D., Stehle J., Stark Y., Hessling M., Daubert D., Felderer K., Kaden S., Kolln J., Enzelberger M., Urlinger S., “A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties”, MAbs, 2013, vol. 5, no. 3, pp. 445–470.

52. Rothe C., Urlinger S., Lohning C., Prassler J., Stark Y., Jager U., Hubner B., Bardroff M., Pradel I., Boss M., Bittlingmaier R., Bataa T., Frisch C., Brocks B., Honegger A., Urban M., “The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies”, Journal of Molecular Biology, 2008, vol. 376, no. 4, pp. 1182–1200.

53. Hairul Bahara N. H., Chin S. T., Choong Y. S., Lim T. S., “Construction of a Semisynthetic Human VH Single-Domain Antibody Library and Selection of Domain Antibodies against alpha-Crystalline of Mycobacterium tuberculosis”, Journal of Biomolecular Screening, 2016. vol. 21, no. 1, pp. 35–43.

54. Eteshola E., “Isolation of scFv fragments specific for monokine induced by interferon-gamma (MIG) using phage display”, Journal of Immunological Methods, 2010, vol. 358, no. 1–2, pp. 104–110.

55. Rahbarnia L., Farajnia S., Babaei H., Majidi J., Veisi K., Khosroshahi S. A., Tanomand A., “Development of a novel human scFv against EGFR L2 domain by phage display technology”, Current Pharmaceutical Design, 2016, vol. 22, sep. 28.

56. Rauchenberger R., Borges E., Thomassen-Wolf E., Rom E., Adar R., Yaniv Y., Malka M., Chumakov I., Kotzer S., Resnitzky D., Knappik A., Reiffert S., Prassler J., Jury K., Waldherr D., Bauer S., Kretzschmar T., Yayon A., Rothe C., “Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3”, Journal of Biological Chemistry, 2003, vol. 278, no. 40, pp. 38194–38205.

57. Padlan E. A., “Anatomy of the antibody molecule”, Molecular Immunology, 1994, vol. 31, no. 3, pp. 169–217.

58. Padlan E. A., “Does base composition help predispose the complementarity-determining regions of antibodies to hy-permutation?”, Molecular Immunology, 1997, vol. 34, no. 11, pp. 765–770.

59. Fellouse F. A., Barthelemy P. A., Kelley R. F., Sidhu S. S., “Tyrosine plays a dominant functional role in the paratope of a synthetic antibody derived from a four amino acid code”, Journal of Molecular Biology, 2006, vol. 357, no. 1, pp. 100–114.

60. Ho S. Y., Mittal G. S., “Electroporation of cell membranes: a review”, Critical Reviews In Biotechnology, 1996, vol. 16, no. 4, pp. 349–362.

61. Hairul Bahara N. H., Tye G. J., Choong Y. S., Ong E. B., Ismail A., Lim T. S., “Phage display antibodies for diagnostic applications”, Biologicals, 2013, vol. 41, no. 4, pp. 209–216.

62. Igawa T., Mimoto F., Hattori K., “pH-dependent antigen-binding antibodies as a novel therapeutic modality”, Biochimica et Biophysica Acta, 2014, vol. 1844, no. 11, pp. 1943–1950.

63. Bonvin P., Venet S., Fontaine G., Ravn U., Gueneau F., Kosco-Vilbois M., Proudfoot A. E., Fischer N., “De novo isolation of antibodies with pH-dependent binding properties”, MAbs, 2015, vol. 7, no. 2, pp. 294–302.

64. Liao S. M., Du Q. S., Meng J. Z., Pang Z. W., Huang R. B., “The multiple roles of histidine in protein interactions”, Chemistry Central Journal, 2013, vol. 7, no. 1, p. 44.

65. Rizk S. S., Paduch M., Heithaus J. H., Duguid E. M., Sandstrom A., Kossiakoff A. A., “Allosteric control of ligand-binding affinity using engineered conformation-specific effector proteins”, Nature Structural & Molecular Biology, 2011, vol. 18, no. 4, pp. 437–442.

66. Uysal S., Vasquez V., Tereshko V., Esaki K., Fellouse F.A., Sidhu S. S., Koide S., Perozo E., Kossiakoff A., “Crystal structure of full-length KcsA in its closed conformation”, Proceedings of the National Academy of Sciences of the United States of America, 2009, vol. 106, no. 16, pp. 6644–6649.

67. Rainey W. E., “Adrenal zonation: clues from 11beta-hydroxylase and aldosterone synthase”, Molecular and Cellular Endocrinology, 1999, vol. 151, no. 1–2, pp. 151–160.

68. Strushkevich N., Gilep A. A., Shen L., Arrowsmith C. H., Edwards A. M., Usanov S. A., Park H. W., “Structural insights into aldosterone synthase substrate specificity and targeted inhibition”, Molecular Endocrinology, 2013, vol. 27, no. 2, pp. 315–324.

69. Gomez-Sanchez C. E., Qi X., Velarde-Miranda C., Plonczynski M. W., Parker C. R., Rainey W., Satoh F., Maekawa T., Nakamura Y., Sasano H., Gomez-Sanchez E. P., “Development of monoclonal antibodies against human CYP11B1 and CYP11B2”, Molecular and Cellular Endocrinology, 2014, vol. 383, no. 1–2, pp. 111–117.

70. Wallner J., Lhota G., Jeschek D., Mader A., Vorauer-Uhl K., “Application of Bio-Layer Interferometry for the analysis of protein/liposome interactions”, Journal of Pharmaceutical and Biomedical Analysis, 2013, vol. 72, pp. 150–154.

71. Prassler J., Thiel S., Pracht C., Polzer A., Peters S., Bauer M., Norenberg S., Stark Y., Kolln J., Popp A., Urlinger S., Enzelberger M., “HuCAL PLATINUM, a synthetic Fab library optimized for sequence diversity and superior performance in mammalian expression systems”, Journal of Molecular Biology, 2011, vol. 413, no. 1, pp. 261–278.

72. Frenzel A., Schirrmann T., Hust M., “Phage display-derived human antibodies in clinical development and therapy”, Mabs, 2016, vol.8, no. 7, pp. 1177–1194.


Review

Views: 797


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)