THERMO-CHEMICAL SYNTHESIS OF ULTRAFINE POWDERS OF YTTRIUM OXIDE ACTIVATED BY EUROPIUM IONS
Abstract
A new approach to the synthesis of nanostructured yttrium oxide powders doped with europium ions by the method of combustionis is described. Carbohydrates (fructose, sucrose) and acetic acid were used as a fuel and hexamethylenetetramine – as additional fuel for ignition of the mixture. Based on the study of specific surface area, microstructure and morphology of the obtained powders, as well as after precursor calcination at 700, 900 and 1100 °C , it was found that specific surface area decreases with the increase of calcination temperature. This is due to the removal of weakly bound impurity groups (ОН, NO, СО2) from the surface of aggregates, compaction of the crystalline structure of the matrix particles and larger particle formation. In case of calcination at 700 °C, nanostructured particles with a size ranging from 39 nm (combustion in acetic acid) to 53 nm (burning in sucrose) are formed. Larger aggregates with particle sizes from 0.6 µm (in presence of sucrose) to 0.23 microns (in presence of acetic acid) are formed at 1100 °C. The powders obtained in such a way exhibit efficient luminescence properties in the red region of the spectrum upon excitation in the UV range (wavelength 250 nm).
About the Authors
O. V. DavydovaBelarus
Assistant Professor, Materials Science in Mechanical Engineering Department
48, Oktyabrya Ave., 246746
N. E. Drobyshevskaya
Belarus
Senior Researcher, Scientific Research Laboratory of Technical Ceramics and Nanomaterials
48, Oktyabrya Ave., 246746
E. N. Poddenezhny
Belarus
Leading Researcher, Scientific Research Laboratory of Technical Ceramics and Nanomaterials
48, Oktyabrya Ave., 246746
A. A. Boiko
Belarus
Vice-Rector for Research
48, Oktyabrya Ave., 246746
References
1. Minh L. Q., Strek W., Anh T. K., Yu K., “Luminescent nanomaterials”, Available at: http://www.hindawi.com/journals/jnm/2007/048312 /abs/, (accessed 07.08.12).
2. Mouzon J., “Synthesis of Yb:Y2O3 nanoparticles and fabrication of transparent polycrystalline yttria ceramics”, PhD Thesis, Division of Engineering Materials, Lulea University of Technology, Department of Applied Physics and Mechanical Engineering, 2006.
3. Packiyaraj P., Thangadurai P., “Structural and photoluminescence studies of Eu3+doped cubic Y2O3nanophosphors”, Journal of Luminescence, 2014, vol. 145, pp. 997–1003.
4. Liu F.-W., Hsu C.-H., Chen F.-S., Lu C.-H., “Microwave assisted solvothermal preparation and photoluminescence properties of Y2O3:Eu3+phosphors”, Ceramics International, 2012, vol. 38, no. 2, pp. 1577–1584.
5. Huang H., Xu G. Q., Chin W. S., Gan L. M., Chew C. H., “Synthesis and characterization of Eu:Y2O3 nanoparticles”, Nanotechnology, 2002, vol. 13, no. 3, pp. 318–323.
6. Psuja P., Hreniak D., Strek W., “Rare-earth doped nanocrystalline phosphors for field emission displays”, Available at: http://www.hindawi.com/journals/jnm/2007/081350/ref/, (accessed 07.08.12).
7. Jayaramaiah J. R., Lakshminarasappa B. N., Nagabhushana B. M., “Luminescence studies of europium doped yttrium oxide nano phosphor”, Sensors and Actuators B: Chemical, 2012, vol. 173, pp. 234–238.
8. Anh T. K., Loc D. X., Huong T. T., Vu N., Minh L. Q., “Luminescent nanomaterials containing rare earth ions for security printing”, International Journal of Nanotechnology, 2011, vol. 8, no. 3–5, pp. 335–346.
9. Gupta A., Brahme N., Prasad Bisen D., “Electroluminescence and photoluminescence of rare earth (Eu,Tb) dopedY2O3 nanophosphor”, Journal of Luminescence, 2014, vol. 155, pp. 112–118.
10. Hitz B., “Yb:Y2O3 Ceramic Laser Generates 4.2 W”, Optics Letters, 2004, no. 6, pp. 1212–1214.
11. Beliakov А. V., Lemeshev D. О., Lukin Е. S., Val’nin G. P., Grinberg Е. Е., “Optically transparent ceramics on the basis of yttrium oxide with the use of carbonate and alkoxide precursors”, Steklo i keramika [Glass and ceramics], 2006, no. 8, pp. 17–19.
12. Mukasyan A. S., Epstein P., Dinka P., “Solution combustion synthesis of nanomaterials”, Proceedings of the Combustion Institute, 2007, vol. 31, no. 2, pp. 1789–1795.
13. Dobrodei A. O., Sobolev E. V., Poddenezhnyi E. N., Boiko A. A., “The nanostructured phosphors on the basis of yttrium-aluminum garnet for the discrete photoluminescent transformers of LED lighting instruments”, Perspektivnye materialy [Perspective materials], 2013, no. 1, pp. 19–22.
14. Pomelova Т. А., Bakovets V. V., Korol’kov I. V., Antonova О. V., Dolgovesova I. P., “About abnormal efficiency of a luminescence of submicronic phosphorus Y2O3: Eu3+”, Fizika tverdogo tela [Solid state physics], 2014, vol. 56, no. 12, pp. 2410–2419.
15. Rouquerol J., Rodriguez-Reinoso F., Sing K. S. W., “Characterization of porous solids III : proceedings of the IUPAC Symposium (COPS III), Marseille, France, May 9–12,1993”, Studies in surface science and catalysis, 1993, vol. 87, p. 802.
16. Gregg S., Sing K., Adsorbtsiia, udel’naia poverkhnost’, poristost’ [Adsorption, surface area and porosity], Mir, Moscow, RU, 1970.
17. Permin D. A., Balabanov S. S., Gavrishchuk E. M., Drobotenko V. V., “Producing nanodimensional powders of oxide of yttrium by self-propagating high-temperature synthesis”, Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo [Bulletin of the Nizhny Novgorod university of N. I. Lobachevsky], 2011, no. 2, pp. 91–97.
18. Permin D. A., “Produsing especially pure nanopowders of oxide of yttrium by self-propagating high-temperature synthesis”, Abstract of Ph. D. dissertation, inorganic chemistry, Institute of Chemistry of High-Purity Substances. G. G. Deviatych RAS, Nizhny Novgorod, RU, 2011.
19. Al’miasheva O. V., Fedorov B. A., Smirnov A. V., Gusarov V. V., “The size, morphology and structure of particles of nanopowder of dioxide of the zirconium obtained in hydrothermal conditions”, Nanosistemy: fizika, khimiia, matematika [Nanosystems: physics, chemistry, mathematics], 2010, vol. 1, no. 1, pp. 26–36.