Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

SYNTHESIS OF (E,E)-AZOMETHINEOXIMES BASED ON 4-AMINOACETOPHENONE OXIME

https://doi.org/10.29235/1561-8331-2018-54-2-168-179

Abstract

4-Aminoacetophenone oxime is convenient and accessible reagent for chemical modification of substituted aromatic aldehydes to produce ligands for complexation with transition metals. By the reaction of 4-aminoacetophenone oxime with aldehydes vanillyl series by boiling in absolute methanol in the presence of catalytic amounts of glacial acetic acid, (E,E)-azomethyneoximes with 70–85 % yields were synthesized. By the reaction of 4-aminoacetophenone oxime with 9-phenanthrene carboxaldehyde, ferrocene carboxaldehyde, 5-phenylisoxazole-3-carboxaldehyde and 5-(p-tolyl)isoxazole- 3-carboxaldehyde, corresponding (E,E)-azomethineoximes with 77–84 % yield were obtained. By acylation of the (E)-1-{4-(E)-benzo[d][1,3]dioxol-5-ylmethyleneaminophenyl}ethan-1-one oxime in a solution of dry diethyl ester in the presence of triethylamine, corresponding ester was synthesized with 84 % yield. By quantum chemical calculations using DFT method using level B3LYP1 / MIDI using the theory GAMESS software package and a MIDI basic set, we defined the most thermodynamically stable isomers of the synthesized compounds. In the process of calculations a full optimization of all geometric parameters to achieve a minimum total energy (E,E)-, (E,Z)-, (Z,E)- and (Z,Z)-azomethineoximes was carried out.

About the Authors

E. A. Dikusar
Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus.
Belarus

Evgenij A. Dikusar – Ph. D. (Chemistry), Senior researcher.

13, Surganov Str., 220072, Minsk.



L. N. Filippovich
Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus/
Belarus

Liudmila N. Filippovich – Ph. D. (Chemistry), Researcher.

13, Surganov Str., 220072, Minsk.



S. N. Shahab
Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus.
Belarus

Siyamak N. Shahab – Ph. D. (Chemistry), Professor
of the Russian Academy of Natural History, Senior researcher.

13, Surganov Str., 220072, Minsk.



S. K. Petkevich
Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus .
Belarus

Sergej K. Petkevich – Ph. D. (Chemistry), Senior researcher.

13, Surganov Str., 220072, Minsk.



S. G. Stepin
Vitebsk State Order of Peoples’ Friendship Medical University .
Belarus

Svjatoslav G. Stepin – Ph. D. (Chemistry), Associate Professor, Department of Organic Chemistry.

17, Frun- ze Ave., 210023, Vitebsk. 



References

1. Zhao L., Ng S. W. 1-(4-{[(E)-4-Methylbenzylidene]amino}phenyl)ethanone oxime. Acta Crystallographica Section E Structure Reports Online, 2010, vol. 66, no. 10, pp. o2473. DOI: 10.1107/s1600536810034598

2. Aakeröy C. B., Sinha A. S. Synthesis of ketoximes via a solvent-assisted and robust mechanochemical pathway. RSC Advances, 2013, vol. 3, no. 22, pp. 8168–8171. DOI: 10.1039/c3ra40585k

3. Aakeröy C. B., Beatty A. M., Leinen D. S. Syntheses and Crystal Structures of New “Extended” Building Blocks for Crystal Engineering: (Pyridylmethylene)aminoacetophenone Oxime Ligands. Crystal Growth & Design, 2001, vol. 1, no. 1, pp. 47–52. DOI: 10.1021/cg0055068

4. Canpolat E., Kaya M. Studies on Mononuclear Chelates Derived from Substituted Schiff Bases Ligands (Part 3). Synthesis and Characterization of a New 5-Nitrosalicylidene-p-aminoacetophenoneoxime and Its Complexes with Co(II), Ni(II), Cu(II), and Zn(II). Russian Journal of Coordination Chemistry, 2005, vol. 31, no. 6, pp. 415–419. DOI: 10.1007/s11173-005-0113-3

5. Gholinejad M., Razeghi M., Najera C. Magnetic Nanoparticles Supported Oxime Palladycle as a Highly Efficient and Separble Catalyst for Room Temperature Suzuki-Miyaura Coupling Reaction in Aqueous Media. RSC Advances, 2015, vol. 5, no. 61, pp. 49568–49576. DOI: 10.1039/c5ra05077d

6. Granovskii A. D., Sadimenko A. P., Sadimenko M. I., Garnovskii D. A. Common and less-common coordination modes of the typical chelating and heteroaromatic ligands. Coordination Chemistry Reviews, 1998, vol. 173, no. 1, pp. 31–77. DOI: 10.1016/s0010-8545(98)00084-8

7. Garnovskii A. D., Kharisov B. I., Blanco L. M., Sadimenko A. P., Uraev A. I., Vasilchenko I. S., Garnovskii D. A. Metal Complexes as Ligands. Journal of Coordination Chemistry, 2002, vol. 55, no. 10, pp. 1119–1134. DOI: 10.1080/0095897021000022195

8. Woziwodzka A., Gołuński G., Piosik J. Heterocyclic Aromatic Amines Heterocomplexation with Biologically Active Aro- matic Compounds and Its Possible Role in Chemoprevention. ISRN Biophysics, 2013, vol. 2013, pp. 1–11. DOI: 10.1155/2013/740821

9. Steel P. J. Aromatic nitrogen heterocycles as bridging ligands; a survey. Coordination Chemistry Reviews, 1990, vol. 106, pp. 227–265. DOI: 10.1016/0010-8545(60)80005-7

10. Steel P. J. Nitrogen Heterocycles as Building Blocks for New Metallosupramolecular Architectures. Molecules, 2004, vol. 9, no. 6, pp. 440–448. DOI: 10.3390/90600440

11. Steel P. J. Ligand Design in Multimetallic Architectures: Six Lessons Learned. Accounts of Chemical Research, 2005, vol. 38, no. 4, pp. 243–250. DOI: 10.1021/ar040166v

12. Navarro J. A. R., Lippert B. Simple 1:1 and 1:2 complexes of metal ions with heterocycles as building blocks for discrete molecular as well as polymeric assemblies. Coordination Chemistry Reviews, 2001, vol. 222, no. 1, pp. 219–250. DOI: 10.1016/s0010-8545(01)00390-3

13. César V., Bellemin-Laponnaz S., Gade L. H. Chiral N-heterocyclic carbenes as stereodirecting ligands in asymmetric catalysis. Chemical Society Reviews, 2004, vol. 33, no. 9, pp. 619–636. DOI: 10.1039/b406802p

14. Altenhoff G., Goddard R., Lehmann C. W., Glorius F. Sterically Demanding, Bioxazoline-Derived N-Heterocyclic Carbene Ligands with Restricted Flexibility for Catalysis. Journal of the American Chemical Society, 2004, vol. 126, no. 46, pp. 15195–15201. DOI: 10.1021/ja045349r

15. Zhou H. C., Kitagawa S. Metal–Organic Frameworks (MOFs). Chemical Society Reviews, 2014, vol. 43, no. 16, pp. 5415–5418. DOI: 10.1039/c4cs90059f

16. Würtz S., Glorius F. Surveying Sterically Demanding N-Heterocyclic Carbene Ligands with Restricted Flexibility for Palladium-catalyzed Cross-Coupling Reactions. Accounts of Chemical Research, 2008, vol. 41, no. 11, pp. 1523–1533. DOI: 10.1021/ar8000876

17. Palewicz M., Iwan A., Sikora A., Doskocz J., Strek W., Sek D., Mazurek B. Optical, Struktural, and Electrical Properties of Aromatic Triphenylamine-Based Poly(azomethine)s in Thin Layers. Acta Physica Polonica A, 2012, vol. 121, no. 2, pp. 439–444. DOI: 10.12693/aphyspola.121.439

18. Yang C. J., Jenekhe S. A. Conjugated aromatic poly(azomethines). 1. Characterization of structure, electronic spec- tra, and processing of thin films from soluble complexes. Chemistry of Materials, 1991, vol. 3, no. 5, pp. 878–887. DOI: 10.1021/cm00017a025

19. Zotti G., Randi A., Destri S., Porzio W., Schiavon G. Polyconjugated Azomethine Layers by Sequential Condensation of α,α‘-Dialdehyde-oligothiophenes and 4,4‘-Diamino-diphenylenes on ITO/Glass Electrodes. Chemistry of Materials, 2002, vol. 14, no. 11, pp. 4550–4557. DOI: 10.1021/cm020619v

20. Petrus M. L., Bouwer R. K. M., Lafont U., Athanasopoulos U., Greenham N. C., Dingemans T. J. Small-molecule azomethines: organic photovoltaics via Schiff base condensation chemistry. Journal of Materials Chemistry A, 2014, vol. 2, no. 25, pp. 9474–9477. DOI: 10.1039/c4ta01629g

21. Shmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Su S. J., Midus T. L., Dupnis M., Montgomery J. A. General Atomic and Molecular Electronic-Structure System. Journal of Computational Chemistry, 1993, vol. 14, no. 7, pp. 1347–1363. DOI: 10.1002/jcc.540141112

22. Huzinaga S., Andzelm J. M., Klobukowski M. Gaussian Basis Sets for Molecular Calculations. Amsterdam, Elsevier, 1984. 426 p.


Review

Views: 639


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)