Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

CONTROLLED CuAAC PROTEIN PEGYLATION WITH AZIDE BRANCHING REAGENTS

https://doi.org/10.29235/1561-8331-2018-54-2-197-203

Abstract

Polyethyleneglycol (PEG) is nontoxic, nonimmunogenic, hydrophilic, chargeless and nonbiodegradable poliymer. Its usage as a part of therapeutics protein drugs is common in medicine practice. It is known that covalent attachment of PEG conduces to prolong blood circulation half-lives, improves drug solubility and stability and reduces immunogenicity. It allows optimizing pharmacodynamic and pharmacokinetic drug properties. The goal of structure optimization
of therapeutic proteins conjugates with PEG is to reduce loss of biological activity. It can be reached through controlled site- specific pegylation. We introduce two-step modification of proteins with branched polyethylenglycols via click-chemistry, synthesis of branched PEG azide reagent on the base of tris(hydroxymethyl)aminomethane with three linear PEG polymers. At first, we introduce alkyne groups with NHS-ester of alkyne acid in BSA protein. Then, branched PEG azide reagent reacts with alkyne function via CuAAC. Purification of the conjugates was done via gel-chromotography. Number of modifications was calculated from MALDI mass-spectra.

About the Authors

Yu. V. Martynenko-Makaev
Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus .
Belarus

Yury V. Martynenko-Makaev – Researcher. 

13, Surganov Str., 220072, Minsk.



A. S. Kruhlik
Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus .
Belarus

Aliaksandr S. Kruhlik – Junior researcher.

13, Surganov Str., 220072, Minsk.



O. L. Sharko
Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus .
Belarus

Olga L. Sharko – Ph. D. (Chemistry), Senior researcher.

13, Surganov Str., 220072, Minsk.



V. V. Shmanai
Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus .
Belarus

Vadim V. Shmanai – Ph. D. (Chemistry), Head of the Laboratory.

13, Surganov Str., 220072, Minsk.



References

1. Nucci M. L., Shorr R., Abuchowski A. The therapeutic value of poly(ethylene glycol)-modified proteins. Advanced Drug Delivery Reviews, 1991, vol. 6, no. 2, pp. 133–151. DOI: 10.1016/0169-409X(91)90037-D

2. Harris J. M., Chess R. B. Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery, 2003, vol. 2, no. 3, pp. 214–221. DOI: 10.1038/nrd1033

3. Swierczewska M., Lee K.C., Lee S. What is the future of PEGylated therapies? Expert Opinion on Emerging Drugs, 2015, vol. 20, no. 4, pp. 531–536. DOI: 10.1517/14728214.2015.1113254

4. Turecek P.L., Bossard M.J., Schoetens F., Ivens I.A. PEGylation of Biopharmaceuticals: A Review of Chemistry and Nonclinical Safety Information of Approved Drugs. Journal of Pharmaceutical Sciences, 2016, vol. 105, no. 2, pp. 460–475. DOI: 10.1016/j.xphs.2015.11.015

5. Jevševar S., Kunstelj M., Porekar V. G. PEGylation of therapeutic proteins. Biotechnology Journal, 2010, vol. 5, no. 1, pp. 113–128. DOI: 10.1002/biot.200900218

6. Monfardini C., Schiavon O., Caliceti P., Morpurgo M., Harris J. M., Veronese, F. M. A branched monomethoxypoly(ethylene glycol) for protein modification. Bioconjugate Chemistry, 1995, vol. 6, no. 1, pp. 62–69. DOI: 10.1021/bc00031a006

7. Schiavon O., Caliceti P., Ferruti P., Veronese F. M. Therapeutic proteins: a comparison of chemical and biological properties of uricase conjugated to linear or branched poly(ethylene glycol) and poly(N-acryloylmorpholine). Il Farmaco, 2000, vol. 55, no. 4, pp. 264–269. DOI: 10.1016/s0014-827x(00)00031-8

8. Schiavon O., Pasut G., Moro S., Orsolini P., Guiotto A., Veronese F. M. PEG-Ara-C conjugates for controlled release. European Journal of Medicinal Chemistry, 2004, vol. 39, no. 1, pp. 123–133. DOI: 10.1016/j.ejmech.2003.10.005

9. Bersani C., Berna M., Pasut G., Veronese F. M. PEG-metronidazole conjugates: synthesis, in vitro and in vivo properties. Il Farmaco, 2005, vol. 60, no. 9, pp. 783–788. DOI: 10.1016/j.farmac.2005.04.015

10. Li X.-Q., Lei J.-D., Su Z.-G., Ma G.-H. Comparison of bioactivities of monopegylated rhG-CSF with branched and linear mPEG. Process Biochemistry, 2007, vol. 42, no. 12, pp. 1625–1631. DOI: 10.1016/j.procbio.2007.09.005

11. Nojima Y., Suzuki Y., Yoshida K., Abe F., Shiga T., Takeuchi T., Sugiyama A., Shimizu H., Sato A. Lactoferrin Conjugated with 40-kDa Branched Poly(ethylene Glycol) Has an Improved Circulating Half-Life. Pharmaceutical Research, 2009, vol. 26, no. 9, pp. 2125–2132. DOI: 10.1007/s11095-009-9925-z

12. Turecek P. L., Bossard M. J., Schoetens F., Ivens I. A. PEGylation of Biopharmaceuticals: A Review of Chemistry and Nonclinical Safety Information of Approved Drugs. Journal of Pharmaceutical Sciences, 2016, vol. 105, no. 2, pp. 460–475. DOI: 10.1016/j.xphs.2015.11.015

13. Abuchowski A., McCoy J. R., Palczuk N. C., van Es T., Davis F. F. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. Journal of Biological Chemistry, 1977, vol. 252, no. 11, pp. 3582–3586.

14. Matsushima A., Sasaki H., Kodera Y., Inada Y. Reduction of immunoreactivity of bovine serum albumin conju- gated with polyethylene glycol(PEG) in relation to its esterase activity. Biochemistry International, 1992, vol. 26, no. 3, pp. 485–490.

15. Yamasaki N., Matsuo A., Isobe H. Novel polyethylene glycol derivatives for modification of proteins. Agricultural and Biological Chemistry, 1988, vol. 52, no. 8, pp. 2125–2127. DOI: 10.1271/bbb1961.52.2125

16. Veronese F. M., Caliceti P., Schiavon O. Branched and Linear Poly(Ethylene Glycol): Influence of the Polymer Structure on Enzymological, Pharmacokinetic, and Immunological Properties of Protein Conjugates. Journal of Bioactive and Compatible Polymers, 1997, vol. 12, no. 3, pp. 196–207. DOI: 10.1177/088391159701200303

17. Veronese F. M., Pasut G. PEGylation, successful approach to drug delivery. Drug Discovery Today, 2005, vol. 10, no. 21, pp. 1451–1458. DOI: 10.1016/S1359-6446(05)03575-0

18. Zhang C., Yang X., Yuan Y., Pu J., Liao F. Site-specific PEGylation of therapeutic proteins via optimiza- tion of both accessible reactive amino acid residues and PEG derivatives. BioDrugs, 2012, vol. 26, no. 4, pp. 209–215. DOI: 10.2165/11633350-000000000-00000

19. Neumann H. Rewiring translation - Genetic code expansion and its applications. FEBS Letters, 2012, vol. 586, no. 15, pp. 2057–2064. DOI: 10.1016/j.febslet.2012.02.002

20. Hendrickson T.L., Crécy-Lagard V. de Schimmel P. Incorporation of Nonnatural Amino Acids Into Proteins. Annual Review of Biochemistry, 2004, vol. 73, no. 1, pp. 147–176. DOI: 10.1146/annurev.biochem.73.012803.092429

21. Abuchowski A., van Es T., Palczuk N. C., Davis F. F. Alteration of immunological properties of bovine se- rum albumin by covalent attachment of polyethylene glycol. Journal of Biological Chemistry, 1977, vol. 252, no. 11, pp. 3578–3581.

22. Roberts M. J., Bentley M. D., Harris J. M. Chemistry for peptide and protein PEGylation. Advanced Drug Delivery Reviews, 2002, vol. 54, pp. 459–476. DOI: 10.1016/s0169-409x(02)00022-4


Review

Views: 857


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)