ACRYLAMIDE (CO)POLYMERS DISSOLUTION IN WATER-SALINE SOLUTIONS
https://doi.org/10.29235/1561-8331-2018-54-3-329-337
Abstract
Dissolution of acrylamide anionic (co)polymers in saline solutions (potassium and sodium chlorides) with concentration of 3.4 mol/l was studied by atomic absorption spectroscopy, optical microscopy, gel-test and capillary viscosimetry. It has been established that with increasing in the content of ionogenic groups and the transition from sodium chloride to potassium chloride solutions the dissolution rate of (co)polymer increases. The concentration of cations of low molecular weight electrolytes is higher in the swollen polymer phase than in the solution in the swelling stage of polymers, the difference in the counter ion content decreases with increasing dissolution time. Comparative analysis of the Huggins constant and the hydrodynamic radii of acrylamide (co)polymers has showed that increase in the interaction in polymer-solvent system is accompanied by the increase in size of macromolecular coils. The Kuhn segment of polymer macromolecules is higher in sodium chloride solutions than in potassium chloride solutions and increases with the decrease in ionogenic group content.
About the Authors
D. N. DavlyudBelarus
Daria N. Davlyud – Junior researcher, Laboratory of Polymer-Containing Disperse Systems
9/1, Surganov Str., 220072, Minsk
P. D. Vorobiev
Belarus
Pavel D. Vorobiev – Ph. D. (Chemistry), Senior Researcher, Laboratory of Polymer-Containing Disperse Systems
9/1, Surganov Str., 220072, Minsk
Yu. V. Matrunchik
Belarus
Yuliya V. Matrunchik – Ph. D. (Chemistry), Senior Researcher, Laboratory of Polymer-Containing Disperse Systems
9/1, Surganov Str., 220072, Minsk
E. V. Vorobieva
Belarus
Elena V. Vorobieva – D. Sc. (Chemistry), Associate Professor, Head of the Laboratory of PolymerContaining Disperse Systems
9/1, Surganov Str., 220072, Minsk
N. P. Krutko
Belarus
Nikolay P. Krutko – Academician, D. Sc. (Chemistry), Professor, Director General,
9/1, Surganov Str., 220072, Minsk
References
1. Kurenkov V. F. Polyacrylamide flocculants. Sorosovskii obrazovatel'nyi zhurnal [Soros Educational Journal], 1997, no 7, pp. 57–63 (in Russian).
2. Owen A. T., Fawell P. D., Swift J. D. The preparation and ageing of acrylamide/acrylate copolymer flocculant solutions. International Journal of Mineral Processing, 2007, Vol. 84, pp. 3–14. https://doi.org/10.1016/j.minpro.2007.05.003
3. Narasimhan B. Mathematical models describing polymer dissolution: consequences for drug delivery. Advanced Drug Delivery Reviews, 2001, Vol. 48 (2–3), pp. 195–210. https://doi.org/10.1016/s0169-409x(01)00117-x
4. Narasimhan B., Mallapragada Sk. Dissolution of amorphous and semicrystalline polymers: mechanisms and novel applications. Recent Research Development Macromolecular Research, 1998, vol. 3 (Part 2), pp. 311–335.
5. Tager А. А. Physicochemistry of polymers. Moscow, Nauchnyi mir Publ., 2007. 573 p. (in Russian).
6. Geller B. Je.,Geller A. A., Chirtulov V. G. Practical guidance on the physicochemistry of fiber-forming polymers. Moscow, Chemistry Publ., 1996, 432 p. (in Russian).
7. Neverov A. S., Samuseva L. V., Gromyko Zh. N., Vlasenko D. A. Principles of selection of mixed solvents of polymers. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryia khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical Series, 2013, vol. 3, pp. 10–17 (in Russian).
8. Armstrong J. K., Wenby R. B., Meiselman H. J., Fisher T. C. The Hydrodynamic Radii of Macromolecules and Their Effects on Red blood Cell Aggregation. Biophysical Journal, 2004, vol. 87, no 6, pp. 4259–4270. https://doi.org/10.1529/biophysj.104.047746
9. Davlyud D. N., Vorob'eva E. V., Laevskaya E. V., Krut'ko N. P. , Vorob'ev P. D., Cherednichenko D. V. Rheological properties and concentration cross-overs of polyacrylamide and anionic (co)polymers of аcrilamide in aqueous-salt solutions. Doklady Natsional'noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2017, vol. 61, no. 4, pp. 69–76 (in Russian).
10. Shulyak I. V., Grushova E. I. Semenchenko A. M. Rheological properties of aqueous solutions of polyethylene glycols with various molecular weights. Russian Journal of Physical Chemistry A , 2011, vol. 85, no 3, pp. 419–422. https://doi. org/10.1134/s0036024411030265
11. Manzhai V. N., Klimova N. L. New opossibilities of turbo-rheometric investigation method of polymer diluted solutions. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, vol. 309, no. 6, pp. 85–87 (in Russian).
12. Ribar T., Koening J. L., Bhargava R. FTIR Imaging of Polymer Dissolution. 2. Solvent / Nonsolvent Mixtures. Macromolecules, 2001, Vol. 34, no 23 pp. 8340–8346. https://doi.org/10.1021/ma011152x
13. Kavalerskaya N. E., Ferapontov N. B. The behavior of cross-linked polyacrylamide in solutions of low-molecular electrolytes. Sorbcionnye i Khromatograficheskie Processy = Sorption and Chromatographic Processes, 2009, vol. 9, no 3, pp. 433–440 (in Russian).
14. Butyrskaya E. V., Shaposhnik А. М. Comparative analysis of hydration shells of lithium and potassium cations. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Khimiya. Biologiya. Farmatsiya = Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy, 2004, no 2, pp. 25–27 (in Russian).
15. Hooper H. H., Baker J. P. , Blanch H. W., Prausnitz J. M. Swelling equilibria for positively ionized polyacrylamide hydrogels. Macromolecules, 1990, vol. 23, no 4, pp. 1096–1104. https://doi.org/10.1021/ma00206a031