LONG-LIVED RADIONUCLIDES IN THE PRODUCTION OF [18F]FLUOROCHOLINE FOR PET-DIAGNOSIS
https://doi.org/10.29235/1561-8331-2018-54-3-359-368
Abstract
In the present study the distribution of long-lived radionuclides between the drug product, recovered water [ 18O]H2 O and solid phase extraction cartridges was studied in [18F]fluorocholine production process. Isotopic composition for long-lived nuclides (half-lives = 10–312 days) was determined, the mechanisms of their formation and accumulation on cartridges are considered. It was shown that in the batches of pharmaceutical produced the content of long-lived nuclides is by 5 orders of magnitude lower than the limit value specified by the appropriate 07/2016:2793 European Pharmacopoeia article. The results obtained are of vital importance for optimization of the procedures for radioactive waste management in the production of [18F]fluorocholine using IBA Cyclone 18/9 HC cyclotron and, consequently, for minimization of radiation exposure of personnel.
About the Authors
P. V. TyletsBelarus
Pavel V. Tylets – Engineer for radiation and dosimetry monitoring
223040, a/g Lesnoi-2, Minsk District
O. V. Tugay
Belarus
Оlga V. Tugay – Laboratory Technician
223040, a/g Lesnoi-2, Minsk District
Student
4, Nezavisimosty Ave., 220030, Minsk
V. O. Krot
Belarus
Vadzim О. Krot – Laboratory Technician
223040, a/g Lesnoi-2, Minsk District
Student
4, Nezavisimosty Ave., 220030, Minsk
A. A. Ivaniykovich
Belarus
Аlexander А. Ivaniykovich – Leading Engineer
93, Starovilensky trakt, 220053, Minsk
S. A. Soroka
Belarus
Sergey A. Soroka – Head of Production-Research Department for the measurement of ionizing radiation
93, Starovilensky trakt, 220053, Minsk
D. I. Brinkevich
Belarus
Dmitrii I. Brinkevich – Ph. D. (Physics and Mathematics), Engineer for the registration and storage of nuclear and radioactive materials
223040, a/g Lesnoi-2, Minsk District
Leading Researcher
4, Nezavisimosty Ave., 220030, Minsk
S. D. Brinkevich
Belarus
Svyatoslav D. Brinkevich – Ph. D. (Chemistry), Head of cyclotron-radiochemistry laboratory
223040, a/g Lesnoi-2, Minsk District
Associate Professor
4, Nezavisimosty Ave., 220030, Minsk
O. A. Baranovski
Belarus
Aleg А. Baranovski – Head of PET/CT diagnostics laboratory
223040, a/g Lesnoi-2, Minsk District
G. V. Chizh
Belarus
Georgi V. Chizh – Ph. D. (Medicine), Head of Positronemission Tomography Department
223040, a/g Lesnoi-2, Minsk District
References
1. Peller P., Subramaniam R., Guermazi A. (ed) PET-CT and PET-MRI in Oncology: A Practical Guide. Medical Radiology. Berlin. London, Springer Publ., 2012. 437 p. https://doi.org/10.1007/978-3-642-01139-9
2. Silveira M. B., Ferreira S. M. Z. M. D., Nascimento L. T. C., Costa F. M., Mendes B. M., Ferreira A. V., Malamut C., Silva J. B., Mamede M. Preclinical acute toxicity, biodistribution, pharmacokineticks, radiation dosimetry and microPET imaging studies of [18F]fluorocholine in mice. Applied Radiation and Isotopes. 2016, vol. 116, no 1, pp. 92–101 https://doi. org/10.1016/j.apradiso.2016.07.021
3. Brinkevich S. D., Sukonko O. G., Chizh G. V., Naumovich A. S. Positron-emission tomography. Part 1: method description. Production of radiopharmaceuticals. Medico-biologicheskie problemy zhiznedeyatel’nosti = Medical and biological problems of life activity, 2013, vol. 10, no 2, pp. 129–137 (in Russian).
4. Brinkevich D. I., Brinkevich S. D., Baranovsky O. A., Chizh G. V., Ivanyukovich А. А. Long-lived radionuclides in production of 2-[18F]fluorodeoxyglucose. Meditsinskaya fizika = Medical physics, 2018, no 1, pp. 1–6 (in Russian).
5. Kryza D., Tadino V., Filannino M. A., Villeret G., Lemoucheux L. Fully automated [18F]fluorocholine synthesis in the TracerLab MXFDG Coincidence synthesizer. Nuclear Medicine and Biology. 2008, vol. 35, no 2, pp. 255–260. https://doi. org/10.1016/j.nucmedbio.2007.11.008
6. Sanitary norms and specifications № 142 from 31.12.2015. Requirements to security of radiation safety of staff and population at radioactive waste management. Available at: http://www.svetlcge.by/wp-content/uploads/2015/01/ постановление-мз-рб-от-31.12.2015-№-142.pdf.
7. Firestone R. B., Shirley V. S. Table of radioactive isotopes. New York, John Wiley and Sons Publ., 1988. 1056 p.
8. Bowden L., Vintro L. L., Mitchell P. I., O’Donnell P. G., Seymour A. M., Duffy G. J. Radionuclide impurities in proton-irradiated [18O]H2 O for the production of 18F− : Activities and distribution in the [18F]FDG synthesis process. Applied Radiation and Isotope, 2009, vol. 67, no 2, pp. 248–255. https://doi.org/10.1016/j.apradiso.2008.10.015
9. Gillies J. M., Najim N., Zweit J. Analysis of metal radioisotope impurities generated in [18O]H2 O during the cyclotron production of fluorine-18. Applied Radiation and Isotopes, 2006, vol. 64, no 4, pp. 431–434. https://doi.org/10.1016/j.apradiso.2005.08.008
10. Ito S., Sakane H., Deji S., Saze T., Nishizawa K. Radioactive byproducts in [18O]H2 O used to produce 18F for [18F]FDG synthesis. Applied Radiation and Isotopes, 2006, vol. 64, no 3, pp. 298–305. https://doi.org/10.1016/j.apradiso.2005.10.001
11. Guarino P., Rizzo S., Tomarchio E., Greco D. Gamma-ray spectrometric characterization of waste activated target components in a PET cyclotron. 18th International Conference on Cyclotrons and Their Applications. 1–5 Oct 2007. Giardini Naxos, Messina, Italy, pp. 295–297.
12. Schueller M. J., Alexoff D. L., Schlyer D. J. Separating long-lived metal ions from 18F during H2 18O recovery. Nuclear Instruments and Methods in Physics Research B, 2007, vol. 261, pp. 795–799. https://doi.org/10.1016/j.nimb.2007.04.193
13. Ulrici L., Brugger M., Otto Th., Roesler S. Radionuclide characterization studies of radioactive waste produced at high-energy accelerators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, vol. 562, no 2, pp. 596–600. https://doi.org/10.1016/j.nima.2006.02.043
14. Aygun M., Cesur A., Dogru M., Boztosun I., Dapo H., Kanarya M., Kuluozturk M. F., Bal S. S., Karatepe S. Using a clinical linac to determine the energy levels of 92mNb via the photonuclear reaction. Applied Radiation and Isotopes, 2016, vol. 115, no 1, pp. 97–99. https://doi.org/10.1016/j.apradiso.2016.06.007