Electrochemical properties and optical response of cadmium selenide quantum dot film electrodes
https://doi.org/10.29235/1561-8331-2021-57-2-144-151
Abstract
Electrochemical charge/discharge mechanisms in the electrophoretically deposited CdSe quantum dot (QD)
film electrodes in NBu4PF6 acetonitrile solution have been investigated. The films were deposited from CdSe colloidal solution in nitrobenzene at variable QD size (diameter) from 3.4 to 6.3 nm onto transparent conducting glass substrates. Electrochemical behavior and optical response were characterized by cyclic voltammetry (CV) and in situ absorption spectroscopy. Electrochemical charging under an inert gas atmosphere results in a reversible color change (electrochromism), due to the bleach of exciton absorption with 0.3 optical density changes. The mechanism of electrochemical charging comprises electron transfer from conducting substrate to QD, interparticle transfer and also electron capturing by acceptors in solution. The introduction of a strong electron acceptor (O2) into the solution results in a suppression of electrochromism. The influence of oxygen is rather reversible which is observed from recovered electrochromic behavior after electrolyte resaturation with argon.
Keywords
About the Authors
Y. M. AniskevichBelarus
Yauhen M. Aniskevich – Junior Researcher
14, Leningradskaya str., 220030, Minsk
A. V. Radchanka
Belarus
Aliaksandra V. Radchanka – Junior Researcher
14, Leningradskaya str., 220006, Minsk
M. V. Artemyev
Belarus
Mikhail V. Artemyev – D. Sc. (Chemistry), Head of the Nanochemistry Laboratory
14, Leningradskaya str., 220006, Minsk
G. A. Ragoisha
Belarus
Genady A. Ragoisha – Ph. D. (Chemistry), Leading Researcher
14, Leningradskaya str., 220006, Minsk
E. A. Streltsov
Belarus
Eugene A. Streltsov – D. Sc. (Chemistry), Head of the Electrochemistry Department
14, Leningradskaya str., 220030, Minsk
References
1. Rogach A. (ed.). Semiconductor Nanocrystal Quantum Dots. Synthesis, Assembly, Spectroscopy and Applications. Wien, Springer-Verlag, 2008. 372 p. https://doi.org/10.1007/978-3-211-75237-1
2. Bera D., Qian L., Tseng T.-K., Holloway P. H. Quantum dots and their multimodal applications: A review. Materials, 2010, vol. 3, no. 4, pp. 2260–2345. https://doi.org/10.3390/ma3042260
3. Gaponenko S. V. Optical Properties of Semiconductor Nanocrystal. Cambridge University Press, 1998. 245 p. https://doi.org/10.1017/cbo9780511524141
4. Klimov V. Nanocrystal Quantom Dots. Boca Raton: CRC Press, 2010. 646 p. https://doi.org/10.1201/9781420079272
5. Gudjonsdottir S., van der Stam W., Koopman C., Kwakkenbos B., Evers W. H., Houtepen A. J. On the Stability of Permanent Electrochemical Doping of Quantum Dot, Fullerene, and Conductive Polymer Films in Frozen Electrolytes for Use in Semiconductor Devices. ACS Appl. Nano Mater, 2019, vol. 2, no. 8, pp. 4900–4909. https://doi.org/10.1021/acsanm.9b00863
6. Wang C., Shim M., Guyot-Sionnest P. Electrochromic nanocrystal quantum dots. Science, 2001, vol. 291, no. 5512, pp. 2390–2392. https://doi.org/10.1126/science.291.5512.2390
7. Wang C., Shim M., Guyot-Sionnest P. Electrochromic semiconductor nanocrystal films. Applied Physics Letters, 2002, vol. 80, no. 1, pp. 4–6. https://doi.org/10.1063/1.1430852
8. Guyot-Sionnest P., Wang, C. Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films. Journal of Physical Chemistry B, 2003, vol. 107, no. 30, pp. 7355–7359. https://doi.org/10.1021/jp0275084
9. Guyot-Sionnest P. Charging colloidal quantum dots by electrochemistry. Microchimica Acta, 2008, vol. 160, no. 3, pp. 309–314. https://doi.org/10.1007/s00604-007-0787-y
10. Boehme S. C., Wang H., Siebbeles L. D. A., Vanmaekelbergh D., Houtepen A. J. Electrochemical charging of CdSe quantum dot films: Dependence on void size and counterion proximity. ACS Nano, 2013, vol. 7, no. 3, pp. 2500–2508. https://doi.org/10.1021/nn3058455
11. Puntambekar A., Qi Wang, Miller L., Smieszek N., Chakrapani V. Electrochemical Charging of CdSe Quantum Dots: Effects of Adsorption versus Intercalation. ACS Nano, 2016, vol. 10, no. 12, pp. 10988–10999. https://doi.org/10.1021/acsnano.6b05779
12. Shen H., Wang H., Tang Z., Zhong Niu J., Lou S., Du Z., Li L. S. High quality synthesis of monodisperse zinc-blende CdSe and CdSe/ZnS nanocrystals with a phosphine-free method. CrystEngComm, 2009, vol. 11, no. 8, pp. 1733. https://doi.org/10.1039/b909063k
13. Aniskevich Y., Antanovich A., Prudnikau A., Artemyev M. V., Mazanik A. V., Ragoisha G., Streltsov E. A. Underpotential Deposition of Cadmium on Colloidal CdSe Quantum Dots: Effect of Particle Size and Surface Ligands. Journal of Physical Chemistry C, 2019, vol. 123, no. 1, pp. 931–939. https://doi.org/10.1021/acs.jpcc.8b10318
14. Robel I., Kuno M., Kamat P. V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. Journal of the American Chemical Society, 2007, vol. 129, no. 14, pp. 4136–4137. https://doi.org/10.1021/ja070099a
15. Ronishenko B. V., Antanovich A. V. , Prudnikov A. V., Fedosyuk A. A., Berku N. B., Molinari M., Artem’ev M. V. CdSe quantum dots, nanorods and nanoplatelets from their colloidal solutions in nitrobenzene. Vestnik BGU. Seriya 2, Khimiya. Biologiya. Geografiya, 2016, no. 2, pp. 3–11 (in Russian).
16. Aniskevich Y., Malashchonak M., Antanovich A., Prudnikau A., Ragoisha G., Streltsov E. Photocurrent Switching on Electrophoretic CdSe QD Electrodes with Different Ligands. International Journal of Nanoscience, 2019, vol. 18, no. 3–4, pp. 1–4. https://doi.org/10.1142/s0219581x19400532