Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Thermodynamics of real polymer solutions in the new Rényi and Tsallis formalism

https://doi.org/10.29235/1561-8331-2021-57-2-162-176

Abstract

The generalized non-ideality factor of systems (GNF) was introduced into the Renyi and Tsallis information entropy equations, and new expressions were obtained for information and thermodynamic entropies with a fractional moment of the order entropy gS and thermodynamic gth nonideality factors. Equations in formalism of Renyi and Tsallis:  The equations describe self-organized structures of essentially non-equilibrium systems and can be used in studying the topological and conformational properties of solutions of high-molecular compounds. GNF: where is are relative average characteristics (pi are statistical probabilities) of opposite processes. Factor g varies in the range 0 ≤ g ≤ 2 and depends on which of the competitive processes prevails. An algorithm for calculating the thermodynamic functions of the state of the system under study is presented. The equations are intended for calculating the thermodynamic functions of objects of fractal nature, including real solutions of synthetic and natural highmolecular compounds of plant and animal origin (hyper branched structures, dendrimers, lignins, biological systems, dendrites, systems of internal organs, blood vessels, etc.).

About the Author

N. А. Makarevich
Military Academy of the Republic of Belarus, Minsk, Belarus Northern (Arctic) Federal University named after M. V. Lomonosov
Belarus

Nikolay A. Makarevich - D. Sc. (Chemistry), Professor of the Department of Physics; Professor of the Higher School of Natural Sciences and Technologies

220, Nezalezhnosti Ave., 220000, Minsk

17, Severnaya Dvina Emb., 163002, Arkhangelsk



References

1. Brillouin L. Scientific Uncertainty and Information. New York–London, Academic Press, 1964. 164 p. https://doi.org/10.1016/C2013­0­12512­3

2. Zaripov R. G. Difference information and disorder-order transitions. Kazan, Kazan State Technical University Publishing House, 1999. 155 p. (in Russian).

3. Feder J. Fractals. New York: Plenum Press, 1988. 312 p. https://doi.org/10.1007/978-1-4899-2124-6

4. Kolesnichenko A. V., Marov M. Ya. Turbulence and self-organization. Problems of modeling space and natural environments. Moscow, BINOM. Knowledge laboratory, 2014. 632 p. (in Russian).

5. Naimark O. B. Defect Induced Transitions as Mechanisms of Plasticity and Failure in Multifold Continua. Capriz G., Mariano P. (eds.). Advances in Multifold Theories of Continua with Substructure. Birkhauser, Boston, 2004, pp. 75–114. https://doi.org/10.1007/978-0-8176-8158-6_4

6. Renyi A. Probability Theory. North­Holland, University Amsterdam, 1970. 672 p.

7. Makarevich N. A. Non­ideality factor in the classical equations for real gases and condensed systems: universal associative­ionized multiplier in the classical equations for solutions of nonelectrolytes and electrolytes. Doklady Natsional’noy akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2016, vol. 60, no. 1, pp. 94–101.

8. Tsallis C. Possible generalization of Boltzmann – Gibbs statistics. Journal of Statistical Physics, 1988, vol. 52, no. 1­2, pp. 479–487. https://doi.org/10.1007/bf01016429

9. Karmanov A. P. Self-organization and structural organization of lignin. Ekaterinburg, Ural Branch of the Russian Academy of Sciences, 2004. 270 p. (in Russian).

10. Karmanov A. P., Kuzmin D. V., Shamshina I. N., Belyaev V. Yu., Kocheva L. S., Matveev D. V., Monakov Yu. B. Hydrodynamic and conformational properties of lignins from Sorbus aucuparia and Robinia pseudoacacia woody plants. Polymer Science. Ser. A, 2004, vol. 46, no. 6, pp. 613–619.

11. Karmanov A. P., Poleshchikov S. M., Kocheva L. S .Theoretical and experimental modeling of lignin biosynthesis. Butlerov Communications, 2015, vol. 41, no. 3, pp. 147–151.

12. Szilard L. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen [On the reduction of entropy in a thermodynamic system by the intervention of intelligent beings]. Zeitschrift für Physik, 1929, vol. 53, pp. 840–856 (in German). https://doi.org/10.1007/bf01341281

13. Prigozhin I., Kondepudi D. Modern thermodynamics. From heat engines to dissipative structures. Moscow, Mir Publ., 2002. 461 p. (in Russian).

14. Jaynes E. T. Information theory and statistical mechanics. Physical Review, 1957, vol. 16, no. 4, 620–630. https://doi.org/10.1103/physrev.106.620

15. Bashkirov A. G. Renyi entropy as statistical entropy for complex systems. Teoretical and Mathematical Physics, 2006, vol. 149, no. 2, pp. 1559–1573. https://doi.org/10.1007/s11232-006-0138-x

16. Klimontovich Yu. L. Statistical theory of open systems. Vol. 1. Moscow, Yanus Publ., 1995. 624 p. (in Russian).

17. Zubarev D. N., Morozov V. G., Repke G. Statistical mechanics of nonequilibrium processes. Moscow, Fizmatlit Publ., 2002. 432 p. (in Russian).

18. Polak L. S., Mikhailov A. S. Self-organization in nonequilibrium physicochemical processes. Moscow, NaukaPubl., 1975. 351 p. (in Russian).

19. Cohen E. G. D. Superstatistics. Physica D: Nonlinear Phenomena, 2004, vol. 193, no. 1­4, pp. 35–52. https://doi.org/10.1016/j.physd.2004.01.007

20. Kullback S., Leibler R. A. On information and sufficiency. Annals of Mathematical Statistics, 1951, vol. 22, no. 1, pp. 79–86. https://doi.org/10.1214/aoms/1177729694

21. Makarevich N. A. Interfaces “Gas−Liquid−Solid”. Arkhangelsk, Northern (Arctic) Federal University,2018. 411 p. (in Russian).

22. Maher P. Explication of Inductive Probability. Journal of Philosophical Logic, 2010, vol. 39, no. 6, pp. 593–616. https://doi.org/10.1007/s10992-010-9144-4

23. Joslin C., Goldman S. The third dielectric and pressure virial coefficients of dipolar hard sphere fluids II. Numerical results. Molecular Physics, 1993, vol. 79, no. 3, pp. 499–514. https://doi.org/10.1080/00268979300101401

24. Efimova E. A., Ivanov A. O., Camp P. J. Thermodynamic properties of ferrofluids in applied magnetic fields. Physical Review E – Statistical, Nonlinear, and Soft Matter Physics, 2013, vol. 88, no. 4, pp. 1–11. https://doi.org/10.1103/physreve.88.042310

25. Tsvetkov V. N., Eskin V. E., Frenkel S. Ya. The structure of macromolecules in solutions. Moscow, Nauka Publ., 1964. 720 p. (in Russian).

26. Budtov V. P. Physical chemistry of polymer solutions. St. Petersburg, Khimiya Publ., 1992. 384 р. (in Russian).

27. Flory P. J. Thermodynamics’ of polimer solution. Discussions of the Faraday Society, 1970, vol. 49, no. 7, pp. 7–29.

28. Makarevich N. A., Afanas’ev N. I., Monakov Yu. B. Diffusion kinetics for the adsorption of lignosulfonates at Solution – air interface. Polymer Science. Ser. A, 1998, vol. 40, no. 10, pp. 1040–1045.

29. Afanas’ev N. I., Teltevskaya S. E., Makarevich N. A., Parfenova L. N. Structure and physicochemical properties of lignosulfonates. Ekaterinburg, Ural Branch of the Russian Academy of Sciences, 2005. 164 р. (in Russian).

30. Makarevich N. A., Afanas’ev N. I., Brovko O. S., Palamarchuk I. A., Boytsova T. A. Conformational and complexing properties of lignosulfonates and chitosan. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnyh navuk = Proceedings of the National Academy of Science of Belarus. Chemical series, 2010, no. 4, pp. 25–30 (in Russian).

31. Gerasimov V. K. Free energy of mixing of a binary polymer solution. Polymer Science. Ser. A, 1998, vol. 40, no. 38, pp. 865–869.

32. Karmanov A. P., Poleshchikov S. M. Modeling of the biosynthesis of lignin as a process of enzymatic dehydropolymerization of monolignols. Khimiya rastitel’nogo syr’ya [Chemistry of plant raw materials], 2019, no. 1, рр. 63–72 (in Russian).


Review

Views: 653


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)