Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Molecular-structural homology of proteolytic enzymеs in the studying of proteolysis mechanism and its regulation

https://doi.org/10.29235/1561-8331-2021-57-2-206-217

Abstract

The actual problem of experimental medicine is the substantiation of new model organisms that meet modern requirements of bioethics, cost and conditions of detention. The aim of this work was a comparative analysis of the homology degree of proteolytic enzymes in humans and pulmonary freshwater mollusks. The homology of enzymes in nucleotide sequences in humans and pulmonary freshwater mollusks in the analysis of unregulated proteolysis is 66–68 %; regulated proteolysis – 69–76 %; ubiquitin-like modifiers – 78–83 %; extracellular enzymes – 67–76 %; and intracellular enzymes – 65–72 %. The evolutionary conservatism of proteolytic enzymes and the presence of an open blood circulation, which allows the substances under study to be delivered from the hemolymph directly to target cells, make it possible to use these animals as cheap and convenient test organisms. The practical importance of a sufficiently high homology degree of proteolytic enzymes in humans and pulmonary freshwater mollusks justifies the expediency of forming mollusk aquaculture to obtain proteolytic enzyme protein preparations from their tissues within the framework of the tasks of biopharmaceuticals, cosmetics and the food industry.

About the Authors

A. A. Chirkin
Vitebsk State University named after P. M. Masherov
Belarus

Alexander A. Chirkin – D. Sc. (Biology), Professor

33, Moskovsky Ave, 210038, Vitebsk 



O. M. Balaeva-Tikhomirova
Vitebsk State University named after P. M. Masherov
Belarus

Olga M. Balaeva-Tikhomirova – Ph. D. (Biology), Associate Professor, Head of the Department

33, Moskovsky Ave, 210038, Vitebsk 



V. V. Dolmatova
Vitebsk State University named after P. M. Masherov
Belarus

Victoria V. Dolmatova – Postgraduate Student

33, Moskovsky Ave, 210038, Vitebsk 



I. O. Semenov
Vitebsk State University named after P. M. Masherov
Belarus

Igor O. Semenov – Master’s Student

33, Moskovsky Ave, 210038, Vitebsk 



References

1. Rawlings N. D., Barrett A. J., Bateman A. MEROPS: the peptidase database. Nucleic Acids Res, 2010, vol. 38, no. 1, D227–D233. https://doi.org.10.1093/nar/gkp971

2. King J. V., Liang W. G., Scherpelz K. P., Schilling A. B., Meredith S. C., Tang W. J. Molecular basis of substrate recognition and degradation by human presequence protease. Structure, 2014, vol. 22, no 7, pp. 996–1007. https://doi.org:10.1016/j.str.2014.05.003

3. Oda К. New families of carboxyl peptidases: serine-carboxyl peptidases and glutamic peptidases. Journal of Biochemistry, 2012, vol. 151, no. 1. pp. 13–25. https://doi.org:10.1093/jb/mvr129

4. Chirkin A. A. Intracellular signaling and proteolysis. Biyalogiya i khimiya = Biology and chemistry, 2019, no.4(76), рр. 6–17 (in Russian).

5. Veremeenko K. N., Goloborodko O. P., Kizim A. I. Proteolysis in normal and pathological conditions. Kiev, Zdorov”ya Publ., 1988. 200 p. (in Russian).

6. Kosinets A. N., Kirpichenok L. N. Proteinases and their inhibitors in purulent surgery and oncology. Vitebsk, Vitebsk State Medical University, 2003. 409 p. (in Russian).

7. Varkhede N., Bommana R., Schöneich C. M., Forrest L. F. Proteolysis and oxidation of therapeutic proteins after intradermal or subcutaneous administration. Journal of Pharmaceutical Sciences, 2020, vol. 109, no. 1, pp. 191–205. https://doi.org:10.1016/j.xphs.2019.08.005

8. Robson B. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Computers in Biology and Medicine, 2020, vol. 119, pp. 103670. https://doi.org:10.1016/j.compbiomed.2020.103670

9. Robson B. COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles’ heel conserved region to minimize probability of escape mutations and drug resistance. Computers in Biology and Medicine, 2020, vol. 121, pp. 103749. https://doi.org:10.1016/j.compbiomed.2020.103749

10. Wartecki А., Rzymski P. On the coronaviruses and their associations with the aquatic environment and wastewater. Water, 2020, vol. 12, no. 6, pp. 1598. https://doi.org/10.3390/w12061598

11. Almagro-Moreno S., Kim T. K., Skorupski K., Taylor R. K. Proteolysis of Virulence Regulator Tox R Is Associated with Entry of Vibrio cholerae into a Dormant State. PLoS Genet, 2015, vol. 11, no. 4, pp. e1005145. https://doi.org/10.1371/journal.pgen.1005145

12. Shekhter A. B., Balakireva A. V., Kuznetsova N. V., Vukolova M. N., Litvitsky P. F., Zamyatnin A. A. Collagenolytic enzymes and their applications in biomedicine. Current Medicinal Chemistry, 2019, vol. 26, no. 3, pp. 487–505. https://doi.org/10.2174/0929867324666171006124236

13. Ntziachristos V., Tung C.-H, Bremer C., Weissleder R. Fluorescence molecular tomography resolves protease activity in vivo. Nature Medicine, 2002, vol. 8, no. 7, pp.757–761. https://doi.org/10.1038/nm729

14. Karp G., Iwasa J., Marchall W. Karp’s cell and molecular biology: concepts and experiments. 8th. ed. Danvers,Wiley, 2015. 829 p.

15. Fodor I., Hussein A. A. A., Benjamin P. R., Koene J. M., Pirger Z. The natural history of model organisms. The unlimited potential of the great pond snail, Lymnaea stagnalis. eLife, 2020, vol. 9, pp. e56962. https://doi.org/10.7554/eLife.56962

16. Hodgkin A. L., Huxley A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 1952, vol. 117, no. 4, pp. 500–544. https://doi.org/10.1113/jphysiol.1952.sp004764

17. Kupfermann I., Kandel E. R. Neuronal controls of a behavioral response mediated by the abdominal ganglion of Aplysia. Science, 1969, vol. 164, no. 3881, pp. 847–850. https://doi.org/10.1126/science.164.3881.847

18. Benjamin P. R., Kemenes I. Peptidergic systems in the pond snail Lymnaea: From genes to hormones and behavior. Saleuddin S., Lange A. B., Orchard I. (Eds). Advances in Invertebrate (Neuro) Endocrinology.New York: Apple Academic Press, 2020, pp. 213–254. https://doi.org/10.1201/9781003029854-7

19. Korneev S. A., Vavoulis D. V., Naskar S., Dyakonova V. E., Kemenes I., Kemenes G. CREB2-targeting microRNA is required for long-term memory after single-trial learning. Scientific Reports, 2018, vol. 8, no. 1, pp. 3950. https://doi.org/10.1038/s41598-018-22278-w

20. Rivi V., Benatti C., Colliva C., Radighieri G., Brunello N., Tascedda F., Blom J. M. S. Lymnaea stagnalis as model for translational neuroscience research: From pond to bench. Neuroscience & Biobehavioral Reviews, 2020, vol. 108, pp. 602–616. https://doi.org/10.1016/j.neubiorev.2019.11.020

21. Maasz G., Zrinyi Z., Reglodi D., Petrovics D., Rivnyak A., Kiss T., Jungling A., Tamas A., Pirger Z. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models. Disease Models and Mechanisms,2017, vol. 10, no. 2, pp. 127–139. https://doi.org/10.1242/dmm.027185

22. Sidorov A. V. Neuromodulatory effects of hydrogen peroxide on central neurons in the feeding network of the mollusk Lymnaea stagnalis. Journal of Evolutionary Biochemistry and Physiology, 2017, vol. 53, no. 6, pp. 493–500. https://doi.org/10.1134/s0022093017060060

23. OECD Environment, Health and Safety Publications. Detailed review paper on mollusks-cycle toxicity testing.Series on testing and assessment No. 121. Paris, Environment directorate organization for economic co-operation and development, 2010. Available at: https://www.oecd-ilibrary.org/docserver/9789264221468-en.pdf?expires=1618472688&id=id&accname=guest&checksum=0C664FF27BEAFCA64AA28DEB6FFF0EEB

24. Amorim J., Abreu I., Rodrigues P., Peixoto D., Pinheiro C., Saraiva A., Carvalho A. P., Guimmaraes L., Oliva-Teles L. Lymnaea stagnalis as a freshwater model invertebrate for ecotoxicological studies. Science of The Total Environment, 2019, vol. 669, pp. 11–28. https://doi.org/10.1016/j.scitotenv.2019.03.035

25. Atli G., Grosell M. Characterization and response of antioxidant systems in the tissues of the freshwater pond snail (Lymnaea stagnalis) during acute copper exposure. Aquatic Toxicology, 2016, vol. 17, pp. 38–44. https://doi.org/10.1016/j.aquatox.2016.04.007

26. Baudrot V., Preux S., Ducrot V., Pave A., Charles S. New Insights to compare and choose KTD models for survival based on an interlaboratory study for Lymnaea stagnalis exposed to Cd. Environmental Science & Technology, 2018, vol. 52, no. 3, pp. 1582–1590. https://doi.org/10.1021/acs.est.7b05464

27. Cremazy A., Brix K. V., Wood C. M. Chronic toxicity of binary mixtures of six metals (Ag, Cd, Cu, Ni, Pb, and Zn) to the great pond snail Lymnaea stagnalis. Environmental Science & Technology, 2018, vol. 52, no.10, pp. 5979–5988. https://doi.org/10.1021/acs.est.7b06554

28. Golubev A. P. The dynamics of radioadaptation processes in mollusk populations in water bodies within the Belarusian sector of Chernobyl nuclear contamination zone. Ekologicheskii vestnik = Ecological Bulletin, 2012, no. 2(20), pp. 44–57 (in Russian).

29. Khomich A. S. Assessment of the joint effect of thermal stress, pollution, and parasitic infestation on the activity of antioxidative enzymes in pulmonate mollusk Lymnaea stagnalis. Contemporary Problems of Ecology = Sibirskii Ekologicheskii Zhurnal, 2017, no. 2, pp. 184–192 (in Russian). https://doi.org/10.15372/sej20170208

30. Dromashko S. E., Shevtsova S. N., Babenko A. S. Influence of heavy metals on the large pond snail Lymnaea stagnalis L. Minsk, Belaruskaya Navuka Publ., 2018. 172 p. (in Russian).

31. Perry K. J., Henry J. Q. CRISPR/Cas9-mediated genome modification in the mollusc, Crepidula fornicate. Genesis, 2015, vol. 53, no. 2. pp. 237–244. https://doi.org/10.1002/dvg.22843

32. Abe M., Kuroda R. The development of CRISPR for a mollusc establishes the formin Lsdia1 as the long-sought gene for snail dextral/sinistral coiling. Development, 2019, vol. 146, no. 9, pp. dev175976. https://doi.org/10.1242/dev.175976

33. Chirkin A. A., Dolmatova V. V., Balaeva-Tichomirova O. M. Proteolysis-antiproteolysis system and possible mechanism of the divergence of Lymnaea stagnalis and Planorbarius corneus. The 3rd International symposium on EuroAsian Biodiversity, 05-08 July, 2017. Minsk, BSU, 2017, p. 236.

34. Chirkin A. A., Dolmatova V.V. Comparative analysis of proteolytic enzymes of human and pulmonary freshwater molluscs. Agrobiodiversity for Improving Nutrition, Health and Life Quality, 2018, pp. 234–242. https://doi.org/10.15414/agrobiodiversity.2018.2585-8246.234-242

35. Chirkin A. A., Dolmatova V. V. Bioinformatic analysis of intracellular proteolytic enzymes in humans and freshwater lung molluscs. Novosti mediko-biologicheskikh nauk = News of biomedical sciences, 2018, vol, 18, no. 4, pp. 11–16 (in Russian).

36. Chirkin A. A., Dolmatova V. V., Katsnelson E. I., Tolkacheva T. A. Study of the proteolysis-antiproteolysis system in the tissues of pulmonary freshwater molluscs with the introduction of ethionine. Novosti mediko-biologicheskikh nauk = News of biomedical sciences, 2017, vol. 15, no. 2. pp. 38–45 (in Russian).

37. Semenov I. O., Chirkin A. A. Bioinformaticheskoye issledovaniye signal’nykh putey apoptoza u cheloveka i legochnykh presnovodnykh mollyuskov [Bioinformatic study of signaling pathways of apoptosis in humans and pulmonary freshwater mollusks]. Fiziko-khimicheskaya biologiya kak osnova sovremennoy meditsiny: tez. dokl. Respubl.konf. s mezhdunar. uchastiyem, posvyashchennoy 80-letiyu so dnya rozhdeniya T. S. Morozkinoi (Minsk, 29 May 2020 g.) [Physico-chemical biology as the basis of modern medicine: abstracts. report Republic of conf. with int. participation, dedicated to the 80th anniversary of the birth of T. S. Morozkina (Minsk, May 29, 2020)]. Minsk, BSMU, 2020, pp. 164–165 (in Russian).

38. Chirkin A. A., Danchenko E. O., Tolkacheva T. A., Balaeva-Tikhomirova O. M., Stugareva S. S. Modeling of biochemical signs of diabetes mellitus in pulmonary freshwater mollusks. Novosti mediko-biologicheskikh nauk = News of biomedical sciences, 2016, vol. 14, no. 3. pp. 28–32 (in Russian).

39. Kovtun N. E., Seid-Guseinov A. A., Povshenko A. D. Osteoinductive properties of mother-of-pearl and its components. Solodkov A. P., Chirkin A. A. (eds.) Modern problems of biochemistry. Vitebsk, VSU, 2010, pp. 358–383 (in Russian).

40. Aguilera F. Neoplasia in mollusks: what does it tell us about cancer in humans? A Review. The International journal of eating disorders, 2017, vol. 1, no. 1, pp. 7–16.


Review

Views: 869


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)