1. Recent synthetic and medicinal perspectives of dihydropyrimidinones: а review / R. Kaur [et al.] // Eur. J. Med. Chem. - 2017. - Vol. 132. - P. 108-134. https://doi.org/10.1016/j.ejmech.2017.03.025
2. One-pot synthesis of 1,2,3,4-tetrahydropyrimidin-2(1H)-thione derivatives and their biological activity / M. A. I. Salem [et al.] // J. Heterocyclic Chem.- 2016. - Vol. 53, N 2. - P. 545-557. https://doi.org/10.1002/jhet.2358
3. One-pot synthesis of thiazolo[3,2-a]pyrimidine derivatives, their cytotoxic evaluation and molecular docking studies / T. Sekhar [et al.] // Spectrochim. Acta A Mol. Biomol. Spectrosc. - 2020. - Vol. 231. - P. 118056. https://doi.org/10.1016/j.saa.2020.118056
4. Synthesis and antitumor activity of isolongifoleno[7,8-d]thiazolo[3,2-a]pyrimidine derivatives via enhancing ROS level / C. Ma [et al.] // Chem. Biol. Drug Des. - 2019. - Vol. 94. - P. 1457-1466. https://doi.org/10.1111/cbdd.13522
5. Discovery of new thieno[2,3-d]pyrimidine and thiazolo[5,4-d]pyrimidine derivatives as orally active phosphoinositide 3-kinase inhibitors / Y. Sun [et al.] // Bioorg. Med. Chem. - 2021. - Vol. 29. - P. 115890. https://doi.org/10.1016/j.bmc.2020.115890
6. Synthesis, crystal Ssructure, and biological evaluation of fused thiazolo[3,2-a]pyrimidines as new acetylcholinesterase inhibitors / M. Y. Mahgoub[et al.] // Molecules. - 2019. - Vol. 24, N 12. - P. 2306. https://doi.org/10.3390/molecules24122306
7. Acridone-pyrimidine hybrids- design, synthesis, cytotoxicity studies in resistant and sensitive cancer cells and molecular docking studies / M. Murahari [et al.] // Eur. J. Med. Chem.- 2017. - Vol. 139. - P. 961-981. https://doi.org/10.1016/j.ejmech.2017.08.023
8. Acetylcholinesterase inhibitors: structure based design, synthesis, pharmacophore modeling and virtual screening / K. R. Valasani [et al.] // J. Chem. Inf. Mod. - 2013.- Vol. 53, N 8. - P. -2033-2046. https://doi.org/10.1021/ci400196z
9. Dihydropyrimidones: as novel class of β-glucuronidase inhibitors / F. Ali [et al.] // Bioorg. Med. Chem. - 2016. - Vol. 24, N 16. - P. 3624-3635. https://doi.org/10.1016/j.bmc.2016.06.002
10. Exploration of the dihydropyrimidine scaffold for the development of new potential anti-inflammatory agents blocking prostaglandin E2 synthase-1 enzyme (mPGES-1) / G. Lauroa [et al.] // Eur. J. Med. Chem. - 2014. - Vol. 80. - P. 407-415. https://doi.org/doi.org/10.1016/j.ejmech.2014.04.061
11. Identification of substituted [3, 2-a] pyrimidines as selective antiviral agents: Molecular modeling study / K. R. Babu [et al.] // Antiviral Research. - 2012. - Vol. 95, N 2. - P. 118-127. https://doi.org/doi.org/10.1016/j.antiviral.2012.05.010
12. Synthesis of dihydropyrimidine α, γ-diketobutanoic acid derivatives targeting HIV integrase / O. Sari [et al.] // Eur. J. Med. Chem. - 2015. - Vol. 104. - P. 127-138. https://doi.org/doi.org/10.1016/j.ejmech.2015.09.015
13. Synthesis, molecular docking, and cardioprotective activity of 2-methylthio-1,4-dihydropyrimidines / R. L. Sawant [et al.] // Med. Chem. Res. - 2012. - Vol. 21, N 8. - P. 1825-1832. https://doi.org/10.1007/s00044-011-9700-7
14. Discovery and development of thiazolo[3,2-a]pyrimidinone derivatives as general inhibitors of Bcl-2 family proteins / B. Zhou [et al.] // Chem. Med. Chem. - 2011. - Vol. 6, N 5. - P. 904-921. https://doi.org/10.1002/cmdc.201000484
15. Development of novel thiazolopyrimidines as CDC25B phosphatase inhibitors / S. Kolb [et al.] // Chem. Med. Chem. - 2009. - Vol. 4, N 4. - P .633-648. https://doi.org/10.1002/cmdc.200800415
16. A new insight into subinteractomes of functional antagonists: thromboxane (CYP5A1) and prostacyclin (CYP8A1) synthases / P. V. Ershov[et al.] // Cell Biol. Int. - 2021.- Vol. 45, N 6. - P.1175-1182. https://doi.org/10.1002/cbin.11564
17. От структуры и функции ферментов биосинтеза стероидов к новым генно-инженерным технологиям / Л. А. Новикова [и др.] // Успехи биол. химии. - 2009. - Т. 49.-P. 159-208.
18. Bioactivation of cyclopropyl rings by P450: an observation encountered during the optimisation of a series of hepatitis C virus NS5B inhibitors / X. Zhuo [et al.] // Xenobiotica. - 2018. - Vol. 48, N 12. - P. 1215-1226. https://doi.org/10.1080/00498254.2017.1409915
19. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents / R. S. Keri [et al.] // Eur. J. Med. Chem.- 2015. - Vol. 100. - P.257-269. https://doi.org/10.1016/j.ejmech.2015.06.017
20. Lomize, A. L. Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes / A. L. Lomize, I. D. Pogozheva, H. I. Mosberg// J. Chem. Inf. Mod. - 2011. - Vol. 51, N 4. - P.930-946. https://doi.org/doi 10.1021/ci200020k
21. Ethyl 2-(benzylidene)-7-methyl-3-oxo-2,3-dihydro-5H-thiazolo[3, 2-a]pyrimidine-6-carboxylate analogues as a new scaffold for protein kinase casein kinase 2 inhibitor / C.-H. Jin[et al.] // Bioorg. Med. Chem. - 2014. - Vol. 22, N 17. - P. 4553-4565. https://doi.org/doi.org/10.1016/j.bmc.2014.07.037