Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Catalytic activity of nickel–copper powder alloys in the processes of electrochemical hydrogen evolution in alkaline solution and ethanol alkaline solution

https://doi.org/10.29235/1561-8331-2022-58-1-36-44

Abstract

Ni93Cu and Ni82Cu (at%) alloys were synthesized by the method of combined chemical reduction of Ni(II) and Cu(II) with hydrazine hydrate. These alloys consist of crystalline phases of nickel, solid solution of copper in nickel. Determination by the “capacitive method” of the electrochemically active surface area of working graphite electrodes with “catalytic inks” containing Ni93Cu and Ni82Cu powders showed that it is 4 and 20 % larger than for nickel powder, respectively. It was found that powder alloys Ni93Cu and Ni82Cu are applicable as catalysts for the electrochemical process of hydrogen evolution in alkaline solutions and alkaline ethanol solution. It was determined that the catalytic activity of Ni82Cu powder alloy in the process of hydrogen evolution in the alkaline ethanol solution is higher than for nickel and Ni93Cu powders. The catalytic ability of the Ni82Cu powder alloy during cycling for 25 cycles practically does not change, in contrast to Ni and Ni93Cu.

 

About the Authors

O. N. Vrublevskaya
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

Vrublevskaya Olga N. – Ph. D. (Chemistry), Associate Professor, Vice Director for Scientific and Innovative Work

14, Leningradskaya Str., 220006, Minsk



A. B. Shcherbakova
Belarusian State University
Belarus

Shcherbakova Alexandra B. – student

14, Leningradskaya Str., 220050, Minsk



A. A. Kudaka
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

Kudaka Anton A. – Junior Researcher

14, Leningradskaya Str., 220006, Minsk



M. G. Galuza
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

Galuza Maria G. – Junior Researcher

14, Leningradskaya Str., 220006, Minsk



G. Sevjidsuren
Institute of Physics and Technology of the Mongolian Academy of Sciences
Mongolia

Galsan Sevjidsuren – Ph. D. (Physics). Chair of Materials Science Department

54B, Peace Ave., 13330, Ulaanbaatar



B. Bolormaa
Institute of Physics and Technology of the Mongolian Academy of Sciences
Mongolia

Burentogtokh Bolormaa – Researcher of Materials Science Department

54B, Peace Ave., 13330, Ulaanbaatar



References

1. Ren X., Lv Q., Liu L., Liu B., Wang Y., Liu A., Wu G. Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustainable Energy Fuels, 2020, vol. 4, no. 1, pp. 15–30. https://doi.org/10.1039/C9SE00460B

2. Meng H., Zeng D., Xie F. Recent development of Pd-based electrocatalysts for proton exchange membrane fuel cells. Catalysts, 2015, vol. 5, no. 3. pp. 1221–1274. https://doi.org/10.3390/catal5031221

3. Gong M., Wang D.-Y., Chen C.-C., Hwang B.-J., Dai H. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Research, 2016, vol. 9, no. 1, pp. 28–46. https://doi.org/10.1007/s12274-015-0965-x

4. Lee J. K., Yi Y., Lee H. J. Uhm S., Lee J. Electrocatalytic activity of Ni nanowires prepared by galvanic electrodeposition for hydrogen evolution reaction. Catalysis Today, 2009, vol. 146, no. 1–2, pp. 188–191. https://doi.org/10.1016/j.cattod.2008.12.007

5. Ahn S. H., Hwang S. J., Yoo S. J., Choi I., Kim H.-J., Jang J. H., Nam S. W., Lim T.-H., Lim T., Kim S.-K., Kim J. J. Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. Journal of Materials Chemistry, 2012, vol. 22, no. 30. pp. 15153–15159. https://doi.org/10.1039/C2JM31439H

6. Ewing S. J., Lan R., Xu X. X., Tao S. W. Synthesis of dendritic nano-sized nickel for use as anode material in an alkaline membrane fuel cell. FuelCells, 2010, vol. 10, no. 1, pp. 72–76. https://doi.org/10.1002/fuce.200900102

7. Kuang Y., Feng G., Li P., Bi Y., Li Y., Sun X. Single-crystalline ultrathin nickel nanosheets array from in situ topotactic reduction for active and stable electrocatalysis. Angewandte Chemie, 2016, vol. 55, no. 2, pp. 693–697. https://doi.org/10.1002/anie.201509616

8. Ďurovič M., Hnát J., Bouzek K. Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review. Journal of Power Sources, 2021, vol. 493, 229708. https://doi.org/10.1016/j.jpowsour.2021.229708

9. Ngamlerdpokin K., Tantavichet N. Electrodeposition of nickel–copper alloys to use as a cathode for hydrogen evolution in an alkaline media. International Journal of Hydrogen Energy, 2014, vol. 39, no. 6, pp. 2505–2515. http://doi.org/10.1016/j.ijhydene.2013.12.013

10. Jović B. M., Lačnjevac U. Č. Krstajić N. V., Jović V. D. Ni–Sn coatings as cathodes for hydrogen evolution in alkaline solutions. Electrochimica Acta, 2013, vol. 114, pp. 813–818. https://doi.org/10.1016/j.electacta.2013.06.024

11. Lamy C., Jaubert T., Baranton S., Coutanceau C. Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a proton exchange membrane electrolysis cell (PEMEC): effect of the nature and structure of the catalytic anode. Journal of Power Sources, 2014, vol. 245, pp. 927–936. https://doi.org/10.1016/j.jpowsour.2013.07.028

12. Ulusoy I., Uzunoglu A., Ata A., Ozturk O., Ider M. Hydrogen generation from alkaline solutions of methanol and ethanol by electrolysis. ECS Transactions, 2009, vol. 19, no.10, pp. 77–94. https://doi.org/10.1149/1.3237110

13. Campos-Roldán C. A., González-Huerta R. G., Alonso-Vante N. Experimental protocol for HOR and ORR in alkaline electrochemical measurements. Journal of The Electrochemical Society, 2018, vol. 165, no. 15, pp. J3001–J3007. https://doi.org/10.1149/2.0011815jes

14. Cossar E., Houache M. S. E., Zhang Z., Baranova E. A. Comparison of electrochemical active surface areas methods for various nickel nanostructures. Journal of Electroanalytical Chemistry, 2020, vol. 870, pp. 114246. https://doi.org/10.1016/j.Jelechem.2020.114246

15. Sopousek J., Vrestal J., Pinkas J., Broz P., Bursik J., Styskalik A., Skoda D., Zobac O., Lee J.Cu–Ni nanoalloy phase diagram – prediction and experiment. Calphad, 2014, vol. 45, pp. 33–39. https://doi.org/10.1016/j.calphad.2013.11.004

16. Oshchepkov A. G. The study of hydrogen electrode reactions on nickel electrocatalysts in an alkaline medium. Novosibirsk, 2017. 157 p. (in Russian).

17. Zhu Y., Liu T., Li L., Song S., Ding R. Nickel-based electrodes as catalysts for hydrogen evolution reaction in alkaline media. Ionics, 2018, vol. 24, no. 4, pp. 1121–1127. https://doi.org/10.1007/s11581-017-2270-z

18. Ahn S. H., Park H.-Y., Choi I., Yoo S. J., Hwang S. J. et al. Electrochemically fabricated NiCu alloy catalysts for hydrogen production in alkaline water electrolysis. International Journal of Hydrogen Energy, 2913, vol. 38, no. 31, pp. 13493–13501. https://doi.org/10.1016/j.ijhydene.2013.07.103


Review

Views: 646


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)