In silico оценка новых аффинных взаимодействий метилкумарина с цитохромами P450
https://doi.org/10.29235/1561-8331-2022-58-2-186-190
Анатацыя
Синтезирован 4-метил-7-метоксикумарин (CumOMe) и in silico показано, что локализация метоксильного фрагмената на расстоянии не более 0,4 нм от железа гема возможны для отдельных структур CYP19A1 и CYP46 человека, а также CYP152 S. paucimobilis, CYP158 St. coelicolor, HMUO C. diphtheriae, XPLA R. rhodochrous, CYP199A4 Rh. palustris, CYP101A1 Ps. Putida и CYP51 M. tuberculosis.
Аб аўтарах
Я. ФалетровБеларусь
В. Малюгин
Беларусь
Н. Фролова
Расія
В. Шкуматов
Расія
Спіс літаратуры
1. Raunio, H. Coumarin-Based Profluorescent and Fluorescent Substrates for Determining Xenobiotic-Metabolizing Enzyme Activities in vitro / H. Raunio, O. Pentikainen, R. O. Juvonen // Int. J. Mol. Sci. - 2020. - Vol. 21, N 13. - P 4708. https://doi.org/10.3390/ijms21134708
2. Interaction of coumarin-hydroxylating cytochrome P-450coh from liver microsomes of mice induced by pyrazole with cytochrome B5] / S. A. Usanov [et al.] // Biokhimia. - 1990. - Vol. 55. - P. 995-1007.
3. Juvonen, R. O. Purification and characterization of a liver microsomal cytochrome P-450 isoenzyme with a high affinity and metabolic capacity for coumarin from pyrazole-treated D2 mice / R. O. Juvonen, V. M. Shkumatov, M. A. Lang // Eur. J. Biochem. - 1988. - Vol. 171, N 1-2. - P. 205-211. https://doi.org/10.1111/j.1432-1033.1988.tb13777.x
4. Development of new Coumarin-based profluorescent substrates for human cytochrome P450 enzymes / R. O. Juvonen [et al.] // Xenobiotica. - 2019. - Vol. 49, N 9. - P. 1015-1024. https://doi.org/10.1080/00498254.2018.1530399
5. Substrate Selectivity of Coumarin Derivatives by Human CYP1 Enzymes: In Vitro Enzyme Kinetics and In Silico Modeling / R. O. Juvonen [et al.] // ACS Omega. - 2021. - Vol. 6, N 17. - P. 11286-11296. https://doi.org/10.1021/acsome-ga.1c00123
6. Coumarin Derivatives Solvent-Free Synthesis under Microwave Irradiation over Heterogeneous Solid Catalysts / S. Bouasla [et al.] // Molecules. - 2017. - Vol. 22, N 12. - P. 2072. https://doi.org/10.3390/molecules22122072
7. Xu, X. Docking-based inverse virtual screening: methods, applications, and challenges / X. Xu, M. Huang, X. Zou // Biophys. Res. - 2018. - Vol. 4, N 1. - P. 1-16. https://doi.org/10.1007/s41048-017-0045-8
8. Синтез новых тиазоло [3,2-а]пиримидинов и in silico анализ их биоактивности / И. В. Минеева [и др.] // Вес. Нац. акад. навук Беларусі. Сер. хім. навук. - 2021. - Т. 57, № 4. - С. 456-462. https://doi.org/10.29235/1561-8331-2021-57-4-456-462
9. Stone, K. L. X-ray absorption spectroscopy of chloroperoxidase compound I: Insight into the reactive intermediate of P450 chemistry / K. L. Stone, R. K. Behan, M. T. Green // PNAS. - 2005. - Vol. 102, N 46. - P. 16563-16565. https://doi.org/10.1073/pnas.0507069102
10. A high-throughput screen to identify inhibitors of aromatase (CYP19) / D. M. Stresser [et al.] // Anal. Biochem. -2000. - Vol. 284, N 2. - P. 427-430. https://doi.org/10.1006/abio.2000.4729
11. Characterisation of Candida parapsilosis CYP51 as a drug target using Saccharomyces cerevisiae as host / Y. N. Ruma [et al.] // J. Fungi - 2022. - Vol. 8, N 1. - P. 69. https://doi.org/10.3390/jof8010069
12. Investigation of the Substrate Range of CYP199A4: Modification of the Partition between Hydroxylation and Desaturation Activities by Substrate and Protein Engineering / S. G. Bell [et al.] // Chem. Eur. J. - 2012. - Vol. 18, N 52. -P. 16677-16688. https://doi.org/10.1002/chem.201202776