Оптимизация технологии получения направляющих РНК на планшетном автоматическом синтезаторе
https://doi.org/10.29235/1561-8331-2022-58-4-398-406
Анатацыя
Разработан протокол синтеза и подобраны подходящие реагенты для получения направляющих РНК-олигонуклеотидов для системы CRISPR/Cas на автоматическом синтезаторе ASM-2000 в масштабе 500 нмоль. Отработаны методики выделения, очистки и аналитического контроля синтетических РНК-олигонуклеотидов. С использованием улучшенной технологии получены олигонуклеотиды, являющиеся направляющими РНК для системы CRISPR Cas12a.
Ключ. словы
Аб аўтарах
Е. УлащикРасія
Т. Ахламёнок
Расія
П. Борищик
Расія
О. Шарко
Расія
В. Шманай
Расія
Спіс літаратуры
1. Bajan, S. RNA-Based Therapeutics: From Antisense Oligonucleotides to miRNAs / S. Bajan, G. Hutvagner // Cells. – 2020. – Vol. 9, N 1. – P. 1–26. https://doi.org/10.3390/cells9010137
2. Khvorova, A. The chemical evolution of oligonucleotide therapies of clinical utility / A. Khvorova, J. K. Watts // Nat. Biotechnol. – 2017. – Vol. 35, N 3. – P. 238–248. https://doi.org/10.1038/nbt.3765
3. Kang, K. N. RNA aptamers: a review of recent trends and applications. / K. N. Kang, Y. S. Lee // Adv. Biochem. Eng. Biotechnol. – 2013. – Vol. 131 – P. 153–169. https://doi.org/10.1007/10_2012_136
4. The Limitless Future of RNA Therapeutics / T. R. Damase [et al.] // Front. Bioeng. Biotechnol. – 2021. – Vol. 9, March. – P. 1–24. https://doi.org/10.3389/fbioe.2021.628137
5. Kole, R. RNA therapeutics: Beyond RNA interference and antisense oligonucleotides / R. Kole, A. R. Krainer, S. Altman // Nat. Rev. Drug Discov. – 2012. – Vol. 11, N 2. – P. 125–140. https://doi.org/10.1038/nrd3625
6. The CRISPR revolution and its potential impact on global health security / K. E. Watters [et al.] // Pathog. Glob. Health. – 2021. – Vol. 115, N 2. – P. 80–92. https://doi.org/10.1080/20477724.2021.1880202
7. Novel crispr–cas systems: An updated review of the current achievements, applications, and future research perspectives / S. Nidhi [et al.] // Int. J. Mol. Sci. – 2021. – Vol. 22, N 7. – P. 1–42. https://doi.org/10.3390/ijms22073327
8. Khalil, A. M. The genome editing revolution: review / A. M. Khalil //j. Genet. Eng. Biotechnol. – 2020. – Vol. 18, N 1. – Art. N 68. https://doi.org/10.1186/s43141-020-00078-y
9. Allen, D. Using Synthetically Engineered Guide RNAs to Enhance CRISPR Genome Editing Systems in Mammalian Cells / D. Allen, M. Rosenberg, A. Hendel // Front. Genome Ed. – 2021. – Vol. 2. – P. 1–16. https://doi.org/10.3389/fgeed. 2020.617910
10. Swarts, D. C. Cas9 versus Cas12a/Cpf1: Structure–function comparisons and implications for genome editing / D. C. Swarts, M. Jinek // Wiley Interdiscip. Rev. RNA. – 2018. – Vol. 9, N 5. – P. 1–19. https://doi.org/10.1002/wrna.1481
11. Efficient target cleavage by Type V Cas12a effectors programmed with split CRISPR RNA / R. Shebanova [et al.] // Nucleic Acids Res. – 2022. – Vol. 50, N 2. – P. 1162–1173. https://doi.org/10.1093/nar/gkab1227
12. Caruthers, M. H. A brief review of DNA and RNA chemical synthesis / M. H. Caruthers // Biochem. Soc. Trans. – 2011. – Vol. 39, N 2. – P. 575–580.
13. Pradère, U. Chemical synthesis of long RNAs with terminal 5′-phosphate groups / U. Pradère, F. Halloy, J. Hall // Chem. – A Eur. J. – 2017. – Vol. 23, № 22. – P. 5210–5213. https://doi.org/10.1002/chem.201700514
14. Roy, S. Synthesis of DNA/RNA and their analogs via phosphoramidite and H-phosphonate chemistries / S. Roy, M. Caruthers // Molecules. – 2013. – Vol. 18, N 11. – P. 14268–14284. https://doi.org/10.3390/molecules181114268
15. The allylic protection method in solid-phase oligonucleotide synthesis. An efficient preparation of solid-anchored DNA oligomers / Y. Hayakawa [et al.] //j.am. Chem. Soc. – 1990. – Vol. 112, N 5. – P. 1691–1696. https://doi.org/10.1021/ja00161a006
16. Chemical synthesis of a very long oligoribonucleotide with 2-cyanoethoxymethyl (CEM) as the 2′-O-protecting group: Structural identification and biological activity of a synthetic 110mer precursor-microRNA candidate / Y. Shiba [et al.] // Nucleic Acids Res. – 2007. – Vol. 35, N 10. – P. 3287–3296. https://doi.org/10.1093/nar/gkm202