Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Optimization of the technology for obtaining guide RNA using plate automatic synthesizer

https://doi.org/10.29235/1561-8331-2022-58-4-398-406

Abstract

A synthetic protocol was developed and optimal reagents have been selected for obtaining guide RNA oligonucleotides for the CRISPR/Cas system using ASM-2000 automatic synthesizer in 500 nmol scale. Methods for the isolation, purification and analytical control of synthetic RNA oligonucleotides have been developed. The improved technology has been used for preparation of guide RNAs for the CRISPR Cas12a system.

About the Authors

E. A. Ulashchik
Shmanai Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus
Russian Federation

Ulashchik Egor A. – Researcher.

13, Surganov Str., 220072, Minsk



T. P. Akhlamionok
Shmanai Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus
Russian Federation

Akhlamionok Tatsiana P. – Junior Researcher.

13, Surganov Str., 220072, Minsk



P. Y. Baryshchyk
Shmanai Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus
Russian Federation

Baryshchyk Palina Y. – Junior Researcher.

13, Surganov Str., 220072, Minsk



O. L. Sharko
Shmanai Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus
Russian Federation

Sharko Olga L. – Ph. D. (Chemistry), Leading Researcher.

13, Surganov Str., 220072, Minsk



V. V. Shmanai
Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus
Russian Federation

Shmanai Vadim V. – Ph. D. (Chemistry), Head of the Laboratory.

13, Surganov Str., 220072, Minsk



References

1. Bajan, S. RNA-Based Therapeutics: From Antisense Oligonucleotides to miRNAs / S. Bajan, G. Hutvagner // Cells. – 2020. – Vol. 9, N 1. – P. 1–26. https://doi.org/10.3390/cells9010137

2. Khvorova, A. The chemical evolution of oligonucleotide therapies of clinical utility / A. Khvorova, J. K. Watts // Nat. Biotechnol. – 2017. – Vol. 35, N 3. – P. 238–248. https://doi.org/10.1038/nbt.3765

3. Kang, K. N. RNA aptamers: a review of recent trends and applications. / K. N. Kang, Y. S. Lee // Adv. Biochem. Eng. Biotechnol. – 2013. – Vol. 131 – P. 153–169. https://doi.org/10.1007/10_2012_136

4. The Limitless Future of RNA Therapeutics / T. R. Damase [et al.] // Front. Bioeng. Biotechnol. – 2021. – Vol. 9, March. – P. 1–24. https://doi.org/10.3389/fbioe.2021.628137

5. Kole, R. RNA therapeutics: Beyond RNA interference and antisense oligonucleotides / R. Kole, A. R. Krainer, S. Altman // Nat. Rev. Drug Discov. – 2012. – Vol. 11, N 2. – P. 125–140. https://doi.org/10.1038/nrd3625

6. The CRISPR revolution and its potential impact on global health security / K. E. Watters [et al.] // Pathog. Glob. Health. – 2021. – Vol. 115, N 2. – P. 80–92. https://doi.org/10.1080/20477724.2021.1880202

7. Novel crispr–cas systems: An updated review of the current achievements, applications, and future research perspectives / S. Nidhi [et al.] // Int. J. Mol. Sci. – 2021. – Vol. 22, N 7. – P. 1–42. https://doi.org/10.3390/ijms22073327

8. Khalil, A. M. The genome editing revolution: review / A. M. Khalil //j. Genet. Eng. Biotechnol. – 2020. – Vol. 18, N 1. – Art. N 68. https://doi.org/10.1186/s43141-020-00078-y

9. Allen, D. Using Synthetically Engineered Guide RNAs to Enhance CRISPR Genome Editing Systems in Mammalian Cells / D. Allen, M. Rosenberg, A. Hendel // Front. Genome Ed. – 2021. – Vol. 2. – P. 1–16. https://doi.org/10.3389/fgeed. 2020.617910

10. Swarts, D. C. Cas9 versus Cas12a/Cpf1: Structure–function comparisons and implications for genome editing / D. C. Swarts, M. Jinek // Wiley Interdiscip. Rev. RNA. – 2018. – Vol. 9, N 5. – P. 1–19. https://doi.org/10.1002/wrna.1481

11. Efficient target cleavage by Type V Cas12a effectors programmed with split CRISPR RNA / R. Shebanova [et al.] // Nucleic Acids Res. – 2022. – Vol. 50, N 2. – P. 1162–1173. https://doi.org/10.1093/nar/gkab1227

12. Caruthers, M. H. A brief review of DNA and RNA chemical synthesis / M. H. Caruthers // Biochem. Soc. Trans. – 2011. – Vol. 39, N 2. – P. 575–580.

13. Pradère, U. Chemical synthesis of long RNAs with terminal 5′-phosphate groups / U. Pradère, F. Halloy, J. Hall // Chem. – A Eur. J. – 2017. – Vol. 23, № 22. – P. 5210–5213. https://doi.org/10.1002/chem.201700514

14. Roy, S. Synthesis of DNA/RNA and their analogs via phosphoramidite and H-phosphonate chemistries / S. Roy, M. Caruthers // Molecules. – 2013. – Vol. 18, N 11. – P. 14268–14284. https://doi.org/10.3390/molecules181114268

15. The allylic protection method in solid-phase oligonucleotide synthesis. An efficient preparation of solid-anchored DNA oligomers / Y. Hayakawa [et al.] //j.am. Chem. Soc. – 1990. – Vol. 112, N 5. – P. 1691–1696. https://doi.org/10.1021/ja00161a006

16. Chemical synthesis of a very long oligoribonucleotide with 2-cyanoethoxymethyl (CEM) as the 2′-O-protecting group: Structural identification and biological activity of a synthetic 110mer precursor-microRNA candidate / Y. Shiba [et al.] // Nucleic Acids Res. – 2007. – Vol. 35, N 10. – P. 3287–3296. https://doi.org/10.1093/nar/gkm202


Review

Views: 481


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)