Optimization of the technology for obtaining guide RNA using plate automatic synthesizer
https://doi.org/10.29235/1561-8331-2022-58-4-398-406
Abstract
A synthetic protocol was developed and optimal reagents have been selected for obtaining guide RNA oligonucleotides for the CRISPR/Cas system using ASM-2000 automatic synthesizer in 500 nmol scale. Methods for the isolation, purification and analytical control of synthetic RNA oligonucleotides have been developed. The improved technology has been used for preparation of guide RNAs for the CRISPR Cas12a system.
About the Authors
E. A. UlashchikRussian Federation
Ulashchik Egor A. – Researcher.
13, Surganov Str., 220072, Minsk
T. P. Akhlamionok
Russian Federation
Akhlamionok Tatsiana P. – Junior Researcher.
13, Surganov Str., 220072, Minsk
P. Y. Baryshchyk
Russian Federation
Baryshchyk Palina Y. – Junior Researcher.
13, Surganov Str., 220072, Minsk
O. L. Sharko
Russian Federation
Sharko Olga L. – Ph. D. (Chemistry), Leading Researcher.
13, Surganov Str., 220072, Minsk
V. V. Shmanai
Russian Federation
Shmanai Vadim V. – Ph. D. (Chemistry), Head of the Laboratory.
13, Surganov Str., 220072, Minsk
References
1. Bajan, S. RNA-Based Therapeutics: From Antisense Oligonucleotides to miRNAs / S. Bajan, G. Hutvagner // Cells. – 2020. – Vol. 9, N 1. – P. 1–26. https://doi.org/10.3390/cells9010137
2. Khvorova, A. The chemical evolution of oligonucleotide therapies of clinical utility / A. Khvorova, J. K. Watts // Nat. Biotechnol. – 2017. – Vol. 35, N 3. – P. 238–248. https://doi.org/10.1038/nbt.3765
3. Kang, K. N. RNA aptamers: a review of recent trends and applications. / K. N. Kang, Y. S. Lee // Adv. Biochem. Eng. Biotechnol. – 2013. – Vol. 131 – P. 153–169. https://doi.org/10.1007/10_2012_136
4. The Limitless Future of RNA Therapeutics / T. R. Damase [et al.] // Front. Bioeng. Biotechnol. – 2021. – Vol. 9, March. – P. 1–24. https://doi.org/10.3389/fbioe.2021.628137
5. Kole, R. RNA therapeutics: Beyond RNA interference and antisense oligonucleotides / R. Kole, A. R. Krainer, S. Altman // Nat. Rev. Drug Discov. – 2012. – Vol. 11, N 2. – P. 125–140. https://doi.org/10.1038/nrd3625
6. The CRISPR revolution and its potential impact on global health security / K. E. Watters [et al.] // Pathog. Glob. Health. – 2021. – Vol. 115, N 2. – P. 80–92. https://doi.org/10.1080/20477724.2021.1880202
7. Novel crispr–cas systems: An updated review of the current achievements, applications, and future research perspectives / S. Nidhi [et al.] // Int. J. Mol. Sci. – 2021. – Vol. 22, N 7. – P. 1–42. https://doi.org/10.3390/ijms22073327
8. Khalil, A. M. The genome editing revolution: review / A. M. Khalil //j. Genet. Eng. Biotechnol. – 2020. – Vol. 18, N 1. – Art. N 68. https://doi.org/10.1186/s43141-020-00078-y
9. Allen, D. Using Synthetically Engineered Guide RNAs to Enhance CRISPR Genome Editing Systems in Mammalian Cells / D. Allen, M. Rosenberg, A. Hendel // Front. Genome Ed. – 2021. – Vol. 2. – P. 1–16. https://doi.org/10.3389/fgeed. 2020.617910
10. Swarts, D. C. Cas9 versus Cas12a/Cpf1: Structure–function comparisons and implications for genome editing / D. C. Swarts, M. Jinek // Wiley Interdiscip. Rev. RNA. – 2018. – Vol. 9, N 5. – P. 1–19. https://doi.org/10.1002/wrna.1481
11. Efficient target cleavage by Type V Cas12a effectors programmed with split CRISPR RNA / R. Shebanova [et al.] // Nucleic Acids Res. – 2022. – Vol. 50, N 2. – P. 1162–1173. https://doi.org/10.1093/nar/gkab1227
12. Caruthers, M. H. A brief review of DNA and RNA chemical synthesis / M. H. Caruthers // Biochem. Soc. Trans. – 2011. – Vol. 39, N 2. – P. 575–580.
13. Pradère, U. Chemical synthesis of long RNAs with terminal 5′-phosphate groups / U. Pradère, F. Halloy, J. Hall // Chem. – A Eur. J. – 2017. – Vol. 23, № 22. – P. 5210–5213. https://doi.org/10.1002/chem.201700514
14. Roy, S. Synthesis of DNA/RNA and their analogs via phosphoramidite and H-phosphonate chemistries / S. Roy, M. Caruthers // Molecules. – 2013. – Vol. 18, N 11. – P. 14268–14284. https://doi.org/10.3390/molecules181114268
15. The allylic protection method in solid-phase oligonucleotide synthesis. An efficient preparation of solid-anchored DNA oligomers / Y. Hayakawa [et al.] //j.am. Chem. Soc. – 1990. – Vol. 112, N 5. – P. 1691–1696. https://doi.org/10.1021/ja00161a006
16. Chemical synthesis of a very long oligoribonucleotide with 2-cyanoethoxymethyl (CEM) as the 2′-O-protecting group: Structural identification and biological activity of a synthetic 110mer precursor-microRNA candidate / Y. Shiba [et al.] // Nucleic Acids Res. – 2007. – Vol. 35, N 10. – P. 3287–3296. https://doi.org/10.1093/nar/gkm202