Preview

Известия Национальной академии наук Беларуси. Серия химических наук

Расширенный поиск

Липофильность BODIPY флуорофоров и их распределение в системе октанол-1–вода

https://doi.org/10.29235/1561-8331-2023-59-2-150-161

Аннотация

Выполнен синтез нескольких BODIPY флуорофоров и рассмотрено их распределение в системе октанол-1–вода. Для оценки эффективности использования расчетных методов при описании липофильности BODIPY производных обсуждены такие подходы, как XLopP3, ALogPS, WLogP, SILICOS-IT и MLogP. С помощью квантово-механических расчетов найдены гидрофобная и полярная площади молекулярных поверхностей соединений. Это позволило установить корреляцию между коэффициентом LogP и топологией молекулярной поверхности, а также определить соответствующие величины инкрементов для метильного, ацетильного и фенильного заместителей.

Об авторах

М. С. Хорецкий
Научно-исследовательский институт физико-химических проблем Белорусского государственного университета
Беларусь

Хорецкий Матвей Сергеевич – мл. науч. сотрудник

ул. Ленинградская, 14, 220006, Минск



Н. С. Фролова
Научно-исследовательский институт физико-химических проблем Белорусского государственного университета
Россия

Фролова Нина Степановна – науч. сотрудник

ул. Ленинградская, 14, 220006, Минск



В. М. Шкуматов
Научно-исследовательский институт физико-химических проблем Белорусского государственного университета
Россия

Шкуматов Владимир Макарович – член-корреспондент, д-р биол. наук, профессор, зав. лаб.

ул. Ленинградская, 14, 220006, Минск



Список литературы

1. Mini-Review: Comprehensive Drug Disposition Knowledge Generated in the Modern Human Radiolabeled ADME Study / D. K. Spracklin [et al.] // CPT Pharmacometrics Syst. Pharmacol. – 2020. – Vol. 9, N 8. – P. 428–434. https://doi.org/10.1002/psp4.12540

2. Kassel, D. B. Applications of high-throughput ADME in drug discovery / D. B. Kassel // Curr. Opin. Chem. Biol. – 2004. – Vol. 8, N 3. – P. 339–345. https://doi.org/10.1016/j.cbpa.2004.04.015

3. Food, gastrointestinal pH, and models of oral drug absorption / A. Y. Abuhelwa [et al.] // Eur. J. Pharm. Biopharm. – 2017. – Vol. 112. – P. 234–248. https://doi.org/10.1016/j.ejpb.2016.11.034

4. Arnott, J. A. The influence of lipophilicity in drug discovery and design / J. A. Arnott, S. L. Planey // Expert. Opin. Drug Discov. – 2012. – Vol. 7, N 10. – P. 863–875. https://doi.org/10.1517/17460441.2012.714363

5. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings / C. A. Lipinski [et al.] // Adv. Drug Deliv. Rev. – 2001. – Vol. 46, iss. 1-3. – P. 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0

6. Experimental determination of octanol-water partition coefficient (KOW) of 39 liquid crystal monomers (LCMs) by use of the shake-flask method / M. Zhu [et al.] // Chemosphere. – 2022. – Vol. 287, Part 4. – P. 132407. https://doi.org/10.1016/j.chemosphere.2021.132407

7. High-Throughput log P Determination by Ultraperformance Liquid Chromatography: A Convenient Tool for Medicinal Chemists / Y. Henchoz [et al.] // J. Med. Chem. – 2008. – Vol. 51, N 3. – P. 396–399. https://doi.org/10.1021/jm7014809

8. Cumming, H. Octanol–Water Partition Coefficient Measurement by a Simple 1H NMR Method / H. Cumming, C. Rücker // ACS Omega. – 2017. – Vol. 2, N 9. – P. 6244–6249. https://doi.org/10.1021/acsomega.7b01102

9. Fujita, T. A. New Substituent Constant, π, Derived from Partition Coefficients / T. Fujita, J. Iwasa, C. Hansch // J. Am. Chem. Soc. – 1964. – Vol. 86, N 23. – P. 5175–5180. https://doi.org/10.1021/ja01077a028

10. Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods: An Analysis of ALOGP and CLOGP Methods / A. K. Ghose [et al.] // J. Phys. Chem. A. – 1998. – Vol. 102, N 21. – P. 3762–3772. https://doi.org/10.1021/jp980230o

11. Meylan, W. M. Atom/fragment contribution method for estimating octanol-water partition coefficients / W. M. Meylan, P. H. Howard // J. Pharm. Sci. – 1995. – Vol. 84, N 1. – P. 83–92. https://doi.org/ 10.1002/jps.2600840120.

12. Tetko, I. V. Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices / I. V. Tetko, V. Y. Tanchuk, A. E. P. Villa // J. Chem. Inf. Comput. Sci. – 2001. – Vol. 41, N 5. – P. 1407–1321. https://doi.org/ 10.1021/ci010368v.

13. Kundi, V. Predicting Octanol–Water Partition Coefficients: Are Quantum Mechanical Implicit Solvent Models Better than Empirical Fragment-Based Methods? /V. Hundi, J. Ho // J. Phys. Chem. B. – 2019. – Vol. 123, N 31. – P. 6810–6822. https://doi.org/10.1021/acs.jpcb.9b04061

14. Kiernan, J. A. Dyes and other colorants in microtechnique and biomedical research / J. A. Kiernan // Color. Technol. – 2006. – Vol. 122, N 1. – P. 1–21. https://doi.org/10.1111/j.1478-4408.2006.00009.x

15. Combs, C. A. Fluorescence microscopy: a concise guide to current imaging methods / C. A. Combs // Curr. Protoc. Neurosci. – 2010. – Vol. 50, N 1. https://doi.org/10.1002/0471142301.ns0201s50

16. Loudet, A. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties / A. Loudet, K. Burgess // Chem. Rev. – 2007. – Vol. 107, N 11. – P. 4891–4932. https://doi.org/10.1021/cr078381n

17. Varied Length Stokes Shift BODIPY-Based Fluorophores for Multicolor Microscopy / A. M. Bittel [et al.] // Scientific Reports. – 2018. – Vol. 8. – P. 4590. https://doi.org/10.1038/s41598-018-22892-8

18. A review: Red/near-infrared (NIR) fluorescent probes based on nucleophilic reactions of H2S since 2015 / J. P. Wang [et al.] // Luminescence. – 2020. – Vol. 35, N 8. – P. 1156–1173. https://doi.org/10.1002/bio.3831

19. Minchin, J. E. N. Chapter 3 – In vivo Analysis of White Adipose Tissue in Zebrafish / J. E. N. Minchin, J. F. Rawls //Methods Cell Biol. – 2011. – Vol. 105. – P. 63–86. https://doi.org/10.1016/B978-0-12-381320-6.00003-5

20. Recent progress in the development of fluorescent probes for hydrazine / K. H. Nguen [et al.] // Luminescence. – 2018. – Vol. 33, N 5. – P. 816–836. https://doi.org/10.1002/bio.3505

21. Vedamalai, M. Design and synthesis of the BODIPY–BSA complex for biological applications / M. Vedamalai, I. Gupta // Luminescence. – 2018. – Vol. 33, N 1. – P. 10–14. https://doi.org/10.1002/bio.3365

22. Near-Infrared Two-Photon Fluorescent Chemodosimeter Based on Rhodamine-BODIPY for Mercury Ion Fluorescence Imaging in Living Cells / B. Chen [et al.] // ChemistrySelect. – 2017. – Vol. 2, N 31. – P. 9970–9976. https://doi.org/10.1002/slct.201702092

23. Synthesis of Fluorescent BODIPY-Labeled Analogue of Miltefosine for Staining of Acanthamoeba / E. Courrier [et al.] // ChemistrySelect. – 2018. – Vol. 3, N 27. – P. 7674–7679. https://doi.org/10.1002/slct.201801159

24. Chloro-Functionalized Photo-crosslinking BODIPY for Glutathione Sensing and Subcellular Trafficking / D. P. Murale [et al.] // ChemBioChem. – 2018. – Vol. 19, N 10. – P. 1001–1005. https://doi.org/10.1002/cbic.201800059

25. Development of a bifunctional BODIPY probe for mitochondria imaging and in situ photo-crosslinking in live cell / D. P. Murale [et al.] // Dye. Pigment. – 2021. – Vol. 196. – P. 109830. https://doi.org/10.1016/j.dyepig.2021.109830

26. Synthesis and biological evaluation of cationic TopFluor cholesterol analogues / M. Jurášek [et al.] // Bioorg. Chem. – 2021. – Vol. 117. – P. 105410. https://doi.org/10.1016/j.bioorg.2021.105410

27. Transition-Metal-Free CO-Releasing BODIPY Derivatives Activatable by Visible to NIR Light as Promising Bioactive Molecules / E. Palao [et al.] // J. Am. Chem. Soc. – 2016. – Vol. 138, N 1. – P. 126–133. https://doi.org/10.1021/jacs.5b10800

28. Synthesis, Optical Properties, Preliminary Antimycobacterial Evaluation and Docking Studies of Trifluoroacetylated 3-Pyrrolyl Boron-Dipyrromethene / M. Horetski [et al.] // ChemistrySelect. – 2022. – Vol. 7, N 22. – P. e202200506. https://doi.org/10.1002/slct.202200506

29. The first comparative study of the ability of different hydrophilic groups to water-solubilise fluorescent BODIPY dyes / A. Romieu [et al.] // New J. Chem. – 2013. – Vol. 37. – P. 1016–1027. https://doi.org/10.1039/C3NJ41093E

30. Specific Two-Photon Imaging of Live Cellular and Deep-Tissue Lipid Droplets by Lipophilic AIEgens at Ultralow Concentration / G. Niu [et al.] // Chem. Mater. – 2018. – Vol. 30, N 14. – P. 4778–4787. https://doi.org/10.1021/acs.chemmater.8b01943

31. Monoalkoxy BODIPYs—A Fluorophore Class for Bioimaging / A. M. Courtis [et al.] // Bioconjugate Chem. – 2014. – Vol. 25, N 6. – P. 1043–1051. https://doi.org/10.1021/bc400575w

32. Computation of octanol-water partition coefficients by guiding an additive model with knowledge / T. Cheng [et al.] // J Chem Inf Model. – 2007. – Vol. 47, N 6. – P. 2140–2148. https://doi.org/10.1021/ci700257y

33. Wildman, S. A. Prediction of Physicochemical Parameters by Atomic Contributions / S. A. Wildman, G. M. Crippen // J. Chem. Inf. Comput. Sci. – 1999. – Vol. 39, N 5. – P. 868–873. https://doi.org/10.1021/ci700257y

34. Silicos-IT/Filter-IT [Electronic Resource]. – Mode of access: https://github.com/silicos-it/filter-it. – Date of access: 2 February 2023.

35. Simple Method of Calculating Octanol/Water Partition Coefficient / I. Moriguchi [et al.] // Chem. Pharm. Bull. – 1992. – Vol. 40, N 1. – P. 127–130. https://doi.org/10.1248/cpb.40.127

36. XLOGP3 online [Electronic Resource]. – Mode of access: http://www.sioc-ccbg.ac.cn/skins/ccbgwebsite/software/x. – Date of access: 2 February 2023.

37. ALogPS 2.1 [Electronic Resource]. – Mode of access:http://www.vcclab.org/lab/alogps/. – Date of access 3 February 2023.

38. SwissADME. [Electronic Resource]. – Mode of access: http://www.swissadme.ch/index.php. – Date of access: 3 February 2023.

39. Neese, F. The ORCA program system / F. Nesse // WIREs Comput. Mol. Sci. – 2011. – Vol. 2, N 1. – P. 73–78. https://doi.org/10.1002/wcms.81

40. Neese, F. Software update: the ORCA program system, version 4.0 / F. Nesse // WIREs Comput. Mol. Sci. – 2018. – Vol. 8, N 1. – P. e1327. https://doi.org/10.1002/wcms.1327

41. Adamo, C. Toward reliable density functional methods without adjustable parameters: The PBE0 model / C. Adamo, V. Barone // J. Chem. Phys. – 1999. – Vol. 110, N 13. – P. 6158–6170. https://doi.org/10.1063/1.478522

42. Weigend, F. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy / F. Weigend, R. Ahlrichs // Phys. Chem. Chem. Phys. – 2005. – Vol. 7. – P. 3297–3305. https://doi.org/10.1039/B508541A

43. Tsuzuki, S. Accuracy of intermolecular interaction energies, particularly those of hetero-atom containing molecules obtained by DFT calculations with Grimme's D2, D3 and D3BJ dispersion corrections // S. Tsuzuki, T. Uchimaru // Phys. Chem. Chem. Phys. – 2020. – Vol. 22. – P. 22508–22519. https://doi.org/10.1039/D0CP03679J

44. Marenich, A. V. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions / A. V. Marenich, C. J. Cramer, D. G. Truhlar // J. Phys. Chem. B – 2009. – Vol. 113, N 18. – P. 6378–6396. https://doi.org/10.1021/jp810292n

45. Armarego W. L. F, Purification of Laboratory Chemicals / W. L. F Armarego, C. Chai. – Elsevier Inc. All, 2013. – 1002 p. https://doi.org/10.1016/C2009-0-64000-9

46. Correlation of drug absorption with molecular surface properties / K. Palm [et al.] // J. Pharm. Sci. – 1996. – Vol. 85, N 1. – P. 32–39. https://doi.org/10.1021/js950285r

47. Matsson, P. How Big Is Too Big for Cell Permeability? / P. Matsson, J. Kihlberg // J. Med. Chem. – 2017. – Vol. 60, N 5. – P. 1662–1664. https://doi.org/10.1021/acs.jmedchem.7b00237


Рецензия

Просмотров: 460


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)