Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Synthesis of 22- and 23-dehydroxybrassinosteroids of the stigmastane series

https://doi.org/10.29235/1561-8331-2023-59-3-202-210

Abstract

The synthesis of previously undescribed 22- and 23-deoxyanalogues of homocastasterone has been carried out, which makes it possible to obtain target compounds without replacing the carbon skeleton of the side chain. The key reactions in their synthesis were epoxy ring opening and radical debromination.

About the Authors

V. A. Khripach
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Khripach Vladimir A. – Academician, D. Sc. (Chemistry), Professor, Head of Laboratory

5/2, Kuprevich Str., 220084, Minsk



V. N. Zhabinskii
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Zhabinskii Vladimir N. – Corresponding Member of the National Academy of Sciences of Belarus, D. Sc. (Chemistry), Professor, Chief Researcher

5/2, Kuprevich Str., 220084, Minsk



E. V. Sikorov
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Sikorov Evgeny V. – Laboratory Assistant

5/2, Kuprevich Str., 220084, Minsk



S. I. Lazarev
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Lazarev Stanislav I. – Junior Researcher

5/2, Kuprevich Str., 220084, Minsk



References

1. Khripach V. A., Zhabinskii V. N., Groot A. E. de. Brassinosteroids. A New Class of Plant Hormones. San Diego, Academic Press, 1999. 456 p. https://doi.org/10.1016/B978-0-12-406360-0.X5000-X

2. Bajguz A., Hayat S., Ahmad A. Brassinosteroids – Occurence and Chemical Structures in Plants. Brassinosteroids: A Class of Plant Hormone. Dordrecht, Springer, 2011, pp. 1–27. https://doi.org/10.1007/978-94-007-0189-2_1

3. Wei Z., Li J. Regulation of brassinosteroid homeostasis in higher plants. Frontiers in Plant Science, 2020, vol. 11, pp. 583622. https://doi.org/10.3389/fpls.2020.583622

4. Choe S. W., Dilkes B. P., Fujioka S., Takatsuto S., Sakurai A., Feldmann K. A. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22a-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell, 1998, vol. 10, no. 2, pp. 231–243. https://doi.org/10.1105/tpc.10.2.231

5. Fujita S., Ohnishi T., Watanabe B., Yokota T., Takatsuto S., Fujioka S., Yoshida S., Sakata K., Masaharu M. Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27, C28 and C29 sterols. Plant Journal, 2006, vol. 45, no. 5, pp. 765–774. https://doi.org/10.1111/j.1365-313X.2005.02639.x

6. Ohnishi T., Watanabe B., Sakata K., Mizutani M. CYP724B2 and CYP90B3 function in the early C-22 hydroxylation steps of brassinosteroid biosynthetic pathway in tomato. Bioscience, Biotechnology, and Biochemistry, 2006, vol. 70, no. 9, pp. 2071–2080. https://doi.org/10.1271/bbb.60034

7. Khripach V. A., Zhabinskii V. N., Ermolovich Y. V. Synthetic Aspects of Brassinosteroids. Atta-ur-Rahman (ed.). Studies in Natural Products Chemistry. Amsterdam, Elsevier, 2015, pp. 309–352. https://doi.org/10.1016/B978-0-444-63460-3.00006-7

8. Khripach V. A., Zhabinskii V. N., Antonchick A. P., Konstantinova O. V., Schneider B. Synthesis of hexadeuterated 23-dehydroxybrassinosteroids. Steroids, 2002, vol. 67, no. 13–14, pp. 1101–1108. https://doi.org/10.1016/S0039-128X(02)00071-5

9. Antonchick A. P., Schneider B., Zhabinskii V. N., Khripach V. A. Synthesis of [26,27-2H6]brassinosteroids from 23,24-bisnorcholenic acid methyl ester. Steroids, 2004, vol. 69, no. 10, pp. 617–628. https://doi.org/10.1016/j.steroids.2004.05.014

10. Hurski A. L., Zhabinskii V. N., Khripach V. A. A new approach to the side chain formation of 24-alkyl-22-hydroxy steroids: application to the preparation of early brassinolide biosynthetic precursors. Steroids, 2012, vol. 77, no. 7, pp. 780–790. https://doi.org/10.1016/j.steroids.2012.03.010

11. Takatsuto S., Watanabe T., Gotoh C., Kuriyama H., Noguchi T., Fujioka S. A convenient synthesis of (22S)-22-hydroxycampesterol and some related steroids. Journal of Chemical Research, 1998, no. 4, pp. 176–177. https://doi.org/10.1039/A707201E

12. Mei T. S., Peng L. Z., Zhang T., Li Y. L. A concise and stereoselective synthesis of the cathasterone’s side chain. Chinese Chemical Letters, 2004, vol. 15, pp. 762–764.

13. Takatsuto S., Kuriyama H., Noguchi T., Suganuma H., Fujioka S., Sakurai A. Synthesis of cathasterone and its related putative intermediates in brassinolide biosynthesis. Journal of Chemical Research, 1997, no. 11, pp. 418–419. https://doi.org/10.1039/A704788F

14. Voigt B., Porzel A., Bruhn C., Wagner C., Merzweiler K., Adam G. Synthesis of 24-epicathasterone and related brassinosteroids with modified side chain. Tetrahedron, 1997, vol. 53, no. 50, pp. 17039–17054. https://doi.org/10.1016/S0040-4020(97)10146-6

15. Akhrem A. A., Lakhvich F. A., Khripach V. A., Kovganko N. V., Zhabinsky V. N. New synthesis of (22S,23S)-28-homocastasterone. Dokl. Akad. Nauk SSSR [Doklady (Transactions) of the USSR Academy of Sciences], 1984, vol. 275, no. 5, pp. 1089–1091 (in Russian).

16. Fuentes-Figueroa M. A., Joseph-Nathan P., Burgueno-Tapia E. Absolute configuration assignment of stigmasterol oxiranes. Chirality, 2022, vol. 34, no. 2, pp. 396–420. https://doi.org/10.1002/chir.23390

17. Sierra M. G., Bustos D. A., Zudenigo M. E., Ruveda E. A. Configurational assignment of epimeric 22,23-epoxides of steroids by C-13 NMR-spectroscopy. Tetrahedron, 1986, vol. 42, no. 2, pp. 755–758. https://doi.org/10.1016/S0040-4020(01)87482-2

18. Nakane M., Morisaki M., Ikekawa N. Stereoselectivity in the electrophilic addition reactions of stigmast-22(23)-ene derivatives. Tetrahedron, 1975, vol. 31, no. 22, pp. 2755–2760. https://doi.org/10.1016/0040-4020(75)80285-7


Review

Views: 394


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)