Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Electrical conductivityand thermo-EMF of cobaltite gallates LaCo1-xGaxO3

Abstract

It has been found that in LaCo1-xGaxO3 system increase of the substitution degree х from 0 to 0,95 leads to the gradual electrical conductivity (σ) decrease. Within 300-1050 K temperature range for samples LaCo1-xGaxO3 with х ≤ 0,5 there are three linear parts on the curve lnσ - Т-1, where electrical conductivity activation energies have been calculated for the low, intermediate and high temperature ranges. Electrical conductivity activation energy ( ЕА) for samples at different temperatures has been also estimated using derivativesd In σ/d(T-1). The EA temperature dependence for LaCo1-xGaxO3 at 0 ≤ х ≤ 0,5 passes through a maximum that indicates the temperature for beginning of semiconductor - metal phase transition (TEA,max). It has been shown that the thermo-EMF coefficient (S) for LaCo1-xGaxO3 (0,1 ≤ х ≤ 0,3) at room temperature is negative, increasing with temperature rising, going through zero at 435-530 K, reaching the maximum at 500-650 K and then dropping down. It has been established that the temperatures corresponding to the maximum S and ЕА values are identical.

About the Authors

N. N. Lubinski
Командно-инженерный институт Министерства по чрезвычайным ситуациям Республики Беларусь
Belarus


S. V. Shauchenka
Белорусский государственный технологический университет
Belarus


L. A. Bashkirau
Белорусский государственный технологический университет
Belarus


G. S. Petrov
Белорусский государственный технологический университет
Belarus


S. Ku Slonskaya
Белорусский государственный аграрный технический университет
Belarus


References

1. Bhide V. G., Rajoria D. S., Rao Rama // Phys. Rev. 1972. Vol. 6, N 3. P. 1021-1032.

2. Radaelli P. G., Cheong S.-W. // Phys. Rev. B. 2002. Vol. 66, N 6. P. 094408-1-094408-9.

3. Zobel C. et al. // Phys. Rev. B. 2002. Vol. 66, N 3. P. 020402-1-020402-3.

4. Itoh M. et al. // Physica B. 1999. Vol. 259. P. 902-903.

5. Sun J. R., Li R. W., Shen B. G. // J. Appl. Phys. 2001. Vol. 89, N 2. P. 1331-1335.

6. Yamaguchi S., Okimoto Y., Tokura Y. // Phys. Rev. B. 1996. Vol. 54, N 16. P. R11022-R11025.

7. Dordor P. et al. // Phys. Status Solidi. 1986. Vol. 93 A, N 1. P. 321-329.

8. He T., Chen J., Caevarese T. G. // Solid State Sci. 2006. N 8. Р. 467-469.

9. Иоффе А. Ф. Физика полупроводников. М.: Изд-во АН СССР, 1957.

10. Метфессель З., Маттис Д. Магнитные полупроводники. М.: Мир, 1972.

11. Robert R. et al. // J. Solid State Chem. 2006. Vol. 179. P. 3893-3899.

12. Лубинский Н. Н., Башкиров Л. А., Шевченко С. В., Петров Г. С., Сушкевич А. В. // Свиридовские чтения: Сб. ст. / Под ред. Т. Н. Воробьевой и др. Минск: БГУ, 2008. Вып. 4. С. 78-85.


Review

Views: 365


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)