Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Sol-gel synthesis, structure and magnetic properties of barium aluminoferrite for use in magnetorheological fluids

https://doi.org/10.29235/1561-8331-2024-60-4-271-280

Abstract

A promising area of application of micro- and nanosized magnetic particles is the creation of magnetorheological materials in which such particles are a component of a complex dispersed phase. Of greatest importance is the high shear stress in suspensions based on magnetic particles when a magnetic field is applied, as well as low value of the coercive force. The aim of the work was to study the structure, morphology, and magnetic properties of barium aluminoferrite powders, and to evaluate their effectiveness in magnetic fields by the rheological properties of magnetorheological fluids fabricated using them. Barium aluminoferrite BaAl2Fe10O19 of hexagonal structure was synthesized by the citrate sol-gel method. Using the methods of X-ray phase analysis, scanning electron microscopy, IR spectroscopy, magnetometry, its structural and microstructural features, and magnetic properties were studied. The powder had a maximum specific magnetization M = 20.4 A × m2/kg and a coercive force Hc = 4.8 kOe (at 300 K). The high shear stress (3.5 kPa) at a relatively low magnetic field induction (625 mT) makes it possible to consider the resulting material as promising for use as an additional functional filler for magnetorheological fluids.

About the Authors

Yu. S. Haiduk
Belarusian State University
Belarus

Haiduk Yulyan S. ‒ Ph. D. (Chemistry), Head of the Laboratory

14, Leningradskaya Str., 220030, Minsk



E. V. Korobko
A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus
Belarus

Korobko Evgenia V. ‒ D. Sc. (Engineering), Head of the Laboratory

15, Brovko Str., 220072, Minsk



R. P. Golodok
Belarusian State University
Belarus

Golodok Robert P. ‒ Researher

14, Leningradskaya Str., 220030, Minsk



A. E. Usenka
Belarusian State University
Belarus

Usenka Alexandra E. ‒  Ph. D. (Chemistry), Head of the Department

14, Leningradskaya Str., 220030, Minsk



V. V. Pankov
Belarusian State University
Belarus

Pankov Vladinir V. ‒ D. Sc. (Chemistry), Professor, Professor of the Department

14, Leningradskaya Str., 220030, Minsk



References

1. Khan, S.A., Suresh, A., Seetha Ramaiah, N. Principles, Characteristics and Applications of Magneto Rheological Fluid Damper in Flow and Shear Mode. Procedia Materials Science, 2014, vol. 6, pp. 1547–1556. https://doi.org/10.1016/j.mspro.2014.07.136

2. Kordonski W. I., Shorey A. B., Tricard M. Magnetorheological Jet (MR Jet[sup TM]) Finishing Technology. Journal of Fluids Engineering, 2006, vol. 128, iss. 1, pp. 20. https://doi.org/10.1115/1.2140802

3. Belyaev E. S., Ermolaev A. I., Titov E. Yu., Tumakov S. F. Magnetorheological fluids: technologies of creation and application. Ed. by A. S. Plekhov, Nizhny Novgorod State Technical University n.a. R. E. Alekseev, 2017. 94 p. (in Russian).

4. Jordan A., Scholz R., Wust P., Fak H. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic fluid induced excitation of biocompatible supeparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 1999, vol. 201, iss. 1‒3, pp. 413‒419. https://doi.org/10.1016/s0304-8853(99)00088-8

5. Marie H., Plassat V., Lesier S. Magnetic-fluid-loaded liposomes for MR imaging and therapy of cancer. Journal of Drug Delivery Science and Technology, 2013, vol. 23, no. 1, pp. 25‒37. https://doi.org/10.1016/S1773-2247(13)50004-9

6. Korobko E. V., Pankov V. V., Kotikov D. A., Novikova Z. A., Novik E. S. Nanodispersed fillers based on iron oxide for the complex dispersed phase of magnetically controlled hydraulic fluids. Nanostruktury v kondensirovannykh sredakh: sb. nauch. st. [Nanostructures in condensed media. Collection of scientific articles]. Minsk, A. V. Luikov Institute of Heat and Mass Transfer of the NAS of Belarus, 2018, pp. 182‒188 (in Russian).

7. Chand M., Kumar S., Shankar A., Porwal R. The size induced effect on rheological properties of Co-ferrite based ferrofluid. Journal of Non-Crystalline Solids, 2013, vol. 361, pp. 38‒42. https://doi.org/10.1016/J.JNONCRYSOL.2012.10.003

8. Manouchehri S., Ghasemian Z., Shahbazi-Gahrouei D., Abdolah M. Synthesis and characterization of cobalt-zinc ferrite nanoparticles coated with DMSA. Chem Xpress, 2013, vol. 2, iss. 3, pp. 147–152.

9. Lopez J., Gonzalez-Bahamon L. F., Prado J., Caicedo J. C. Study of magnetic and structural properties of ferrofluids based on Cobalt-Zinc ferrite nanoparticles. Bulletin of the American Physical Society, 2012, vol. 324, iss. 4, pp. 394‒402. https://doi.org/10.1016/J.JMMM.2011.07.040

10. Singhal S., Namgyal T., Bansal S., Chandra K. Effect of Zn Substitution on the Magnetic Properties of Cobalt Ferrite Nano Particles Prepared Via Sol-Gel Route. Journal of Electromagnetic Analysis and Applications, 2010, vol. 2, iss. 6, pp. 376–381. http://doi.org/10.4236/jemaa.2010.26049

11. Rajendra S. G., Chae S. Y., Mane R. S., Han S.-H. Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application. Journal of Electrochemistry, 2011, iss. 1, art. ID 729141. https://doi.org/10.4061/2011/729141

12. Chandrashekhar A., Ladole V. Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application. International Journal of Chemical Science, 2012, vol. 10, iss. 3, pp. 1230‒1234. https://doi.org/10.4061/2011/729141

13. Raghuvanshi S., Kane S. N., Tatarchuk T. R., Mazaleyrat F. Effect of Zn addition on structural, magnetic properties, antistructural modeling of Co1−xZnxFe2O4 nano ferrite. AIP Conference Proceedings, 2018, vol. 1953, iss. 1, art. ID 030055. https://doi.org/10.1063/1.5032390

14. Haiduk Yu. S., Korobko E. V., Kotikov D. A., Svito I. A., Usenka A. E., Pankov V. V. Preparation and characterization of cobalt and cobalt-zinc ferrites for magnetorheological materials. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases, 2022, vol. 24, no. 1, pp. 19–28 (in Russian). https://doi.org/10.17308/kcmf.2022.24/9051

15. Sawadzky G. A., Van der Woude F., Morrish A. H. Cation Distributions in Octahedral and Tetrahedral Sites of the Ferrimagnetic Spinel CoFe2O4. Journal of Applied Physics, 1968, vol. 39, iss. 2, pp. 1204–1206. https://doi.org/10.1063/1.1656224

16. Haiduk, Yu.S., Korobko E. V., Sheutsova K. A., Kotsikau D. A., Svito I. A., Usenka A. E., Ivashenka D. U., Fahmi A., Pankov V. V. Synthesis, structure and magnetic properties of cobalt-zinc nanoferrite for magnetorheological fluids. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases, 2020, vol. 22, no. 2, pp. 28–38 (in Russian). https://doi.org/10.17308/kcmf.2020.22/2526

17. Keyu Chen, Liangchao Li, Guoxiu Tong, Ru Qiao. Fabrication and absorbing property of microwave absorbes based on BaAl2Fe10O19 and poly(o toluidine). Synthetic Metals, 2011, vol. 161, iss. 21‒22, pp. 2192‒2198. https://doi.org/10.1016/j.synthmet.2011.07.019

18. Starikov, A. Yu., Sherstyuk D. P., Sander E. E., Zhivulin V. E., Vinnik D. A. Study of the effect of aluminum substitution on the electrical properties of barium hexaferrite. Vestnik Soveta molodykh uchenykh i spetsialistov Chelyabinskoi oblasti – Vestnik SMUS74 [Bulletin of the Council of Young Scientists and Specialists of the Chelyabinsk Region], 2018, vol. 1, no. 3, pp. 67‒69 (in Russian). https://smus74.ru/content/vypusk-3-22-2018.

19. Kovalyov A. I., Vinnik D. A., Zherebcov D. A., Belaya E. A. Sol-gel synthesis of nanodispersed solid solutions based on barium hexaferrite of composition SrxBa(1–x)Fe12O19. Vestnik Yuzhno-Ural’skogo Gosudarstvennogo universiteta. Seriya “Khimiya” = Bulletin of the South Ural State University. Series: Chemistry, 2023, vol. 15, no. 1, pp. 131‒137 (in Russian).

20. Pullar R. C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Progress in Materials Science, 2012, vol. 57, iss, 7, pp. 1191‒1334. https://doi.org/10.1016/j.pmatsci.2012.04.001

21. Nikmanesh H., Hoghoghifard S., Hadi-Sichami B. Study of the structural, magnetic, and microwave absorption properties of the simultaneous substitution of several cations in the barium hexaferrite structure. Journal of Alloys and Compounds, 2019, vol. 775, pp. 1101‒1108. https://doi.org/10.1016/j.jallcom.2018.10.051

22. Petrova E. G., Shavshukova Ya. A., Kotsikau D. A., Laznev К. V., Pankov V. V. Synthesis of nano-dimensionalcobalt-zinc ferrites by the low-temperature spray-drying with subsequent thermolysis. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2018, vol. 54, no. 4, pp. 406–412 (in Russian). https://doi.org/10.29235/1561-8331-2018-54-4-406-412

23. Auwal I. A., Ünal B., Baykal A., Kurtan U., Amir M. D., Yildiz A., Sertkol M. Electrical and Dielectric Properties of Y3+-Substituted Barium Hexaferrites. Journal of Superconductivity and Novel Magnetism, 2017, vol. 30, iss. 7, pp. 1813–1826. https://doi.org/10.1007/s10948-017-3978-8

24. Durmus Z., Unal B., Toprak M. S., Aslan A., Baykal A. Synthesis and characterization of poly(1-vinyl-1,2,4-triazole) (PVTri)-barium hexaferrite nanocomposite. Physica B, Condensed Matter, 2011, vol. 406, iss. 11, pp. 2298–2302. https://doi.org/10.1016/j.physb.2011.03.063

25. Shalini M. G., Subha A., Sahu B., Sahoo S. C. Phase evolution and temperature dependent magnetic properties of nanocrystalline barium hexaferrite. Journal of Materials Science: Materials in Electronics, 2019, vol. 30, pp. 13647–13654. https://doi.org/10.1007/s10854-019-01734-x

26. Feng W. J., Zhao X., Zheng W. Q., Gang J. T., Cao Y., Yang, H. Microwave Absorption Properties of BaFe12O19 Prepared in Different Temperature with Polyaniline Nanocomposites. Advanced Materials Research, 2017, vol. 1142, pp. 211–215. https://doi.org/10.4028/www.scientific.net/amr.1142.211

27. Chernyakova K. V., Pankov V. V., Ivanovskaya M. I., Lomonosov V. A. Structure and magnetic properties of hexagonal barium ferrite. Vestnik Belorusskogo gosudarstvennogo universiteta. Seriya 2, Khimiya. Biologiya. Geografiya = Bulletin of the Belarusian State University. Series 2. Chemistry, biology, geography, 2008, no. 1, pp. 9‒13 (in Russian).

28. Zahari M. H., Guan B. H., Chuan L. K. Structural and magnetic properties of hexagonal barium ferrite synthesized through the sol-gel combustion route. AIP Conference Proceedings, 2016, vol. 1787, iss. 1, pp. 1‒6. https://doi.org/10.1063/1.4968136


Review

Views: 608


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)