1. Sherman, S. In vitro and in vivo evaluation of carbonate apatite-collagen scaffolds with some cytokines for bone tissue engineering / S. Sherman, D. A. Maretaningtias // Journal of Indian Prosthodontic Society. - 2015. - Vol. 15, № 4. - P. 349-355. https://doi.org/10.4103/0972-4052.171821
2. Bone formation ability of carbonate apatite-collagen scaffolds with different carbonate contents / A. Matsuura, T. Kubo, K. https://doi.org/[et al.] // Dental Materials Journal. - 2009. - Vol. 28, № 2. - P. 234-242. https://doi.org/10.4012/dmj.28.234
3. Marine Collagen/Apatite Composite Scaffolds Envisaging Hard Tissue Applications / G. S. Diogo, E. López-Senra, R. Pirraco [et al.] // Marine Drugs. - 2018. - Vol. 16, № 8. - P. 269. https://doi.org/10.3390/md16080269
4. Kuttappan, S. Biomimetic composite scaffolds containing bioceramics and collagen / gelatin for bone tissue engineering - A mini review / S. Kuttappan, D. Mathew, M. B. Nair // International Journal of Biological Macromolecules. - 2016. - Vol. 93 (Pt. B). - P. 1390-1401. https://doi.org/10.1016/j.ijbiomac.2016.06.043
5. Preparation of a biomimetic composite scaffold from gelatin / collagen and bioactive glass fibers for bone tissue engineering / E. Sharifi, M. Azami, A.-M. Kajbafzadeh [et al.] // Materials Science and Engineering: C. - 2016. - Vol. 59. - P. 533-541. https://doi.org/10.1016/j.msec.2015.09.037
6. Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration: a review of the last 5 years / A. Philippart, A. R. Boccaccini, C. Fleck [et al.] // Expert Review of Medical Devices. - 2015. - Vol. 12, № 1. - P. 93-111. https://doi.org/10.1586/17434440.2015.958075
7. Hu, C. Fabrication of intrafibrillar and extrafibrillar mineralized collagen / apatite scaffolds with a hierarchical structure / C. Hu, M. Zilm, M. Wei // Journal of Biomedical Materials Research Part A. - 2016. - Vol. 104, № 5. - P. 1153-1161. https://doi.org/10.1002/jbm.a.35649
8. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique / A. A. Al-Munajjed, N. A. Plunkett, J. P. Gleeson [et al.] // Journal of Biomedical Materials Research Part B: Applied Biomaterials. - 2009. - Vol. 90, № 2. - P. 584-591. https://doi.org/10.1002/jbm.b.31320
9. Niederberger, M. Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly / M. Niederberger, H. Cölfen // Physical Chemistry Chemical Physics. - 2006. - Vol. 8. - P. 3271-3287. https://doi.org/10.1039/b604589h
10. Hierarchical and non-hierarchical mineralisation of collagen / Y. Liu, Y.-K. Kim, L. Dai [et al.] // Biomaterials. - 2011. - Vol. 32. - P. 1291-1300. https://doi.org/10.1016/j.biomaterials.2010.10.018
11. Enhanced Intrafibrillar Mineralization of Collagen Fibrils Induced by Brushlike Polymers / L. Yu, I. J. Martin, R. M. Kasi, M. Wei // ACS Applied Materials and Interfaces. - 2018. - Vol. 10, № 34. - P. 28440-28449. https://doi.org/10.1021/acsami.8b10234
12. Synergistic intrafibrillar / extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects / X. Zhang, Y. Wang, N. Manh, H. Wang [et al.] // International Journal of Nanomedicine. - 2016. - Vol. 11. - P. 2053-2067. https://doi.org/10.2147/IJN.S102844
13. Ma, J. Biomimetic self-assembly of apatite hybrid materials: from a single molecular template to bi-/multi-molecular templates / J. Ma, J. Wang, X. Ai, S. Zhang // Biotechnology Advances. - 2014. - Vol. 32, № 4. - P. 744-760. https://doi.org/10.1016/j. biotechadv.2013.10.014
14. Assessment of Trabecular Bones Microarchitectures and Crystal Structure of Hydroxyapatite in Bone Osteoporosis with Application of the Rietveld Method / J. M. D. A. Rollo, R. S. Boffa, R. Cesar [et al.] // Procedia Engineering. - 2015. - Vol. 110. - P. 8-14. https://doi.org/10.1016/j.proeng.2015.07.003
15. Physical and Chemical Characterization of Biomineralized Collagen with Different Microstructures / T. Du, Y. Niu, Y. Liu [et al.] // Journal of Functional Biomaterials. - 2022. - Vol. 13, № 2. - P. 57. https://doi.org/10.3390/jfb13020057
16. Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering / Z. Xia, X. Yu, X. Jiang [et al.] // Acta Biomaterialia. - 2013. - Vol. 9, № 7. - P. 7308-7319. https://doi.org/10.1016/j.actbio.2013.03.038
17. Glaser, J. R. Stereology, morphometry, and mapping: the whole is greater than the sum of its parts / J. R. Glaser, E. M. Glaser // Journal of Chemical Neuroanatomy. - 2000. - Vol. 20, № 1. - P. 115-126. https://doi.org/10.1016/s0891-0618(00)00073-9
18. Пантелеев, В. Г. Компьютерная микроскопия / В. Г. Пантелеев, О. В. Егорова, Е. И. Клыкова. - М.: Техносфера, 2005. - 303 с.
19. Collagen fibril orientation in ovine and bovine leather affects strength: A small angle X-ray scattering (SAXS) study / M. M. Basil-Jones, R. L. Edmonds, S. M. Cooper, R. G. Haverkamp // Journal of Agricultural and Food Chemistry. - 2011. - Vol. 59, № 18. - P. 9972-9979. https://doi.org/10.1021/jf202579b
20. Sacks, M. S. A small angle light scattering device for planar connective tissue microstructural analysis / M. S. Sacks, D. B. Smith, E. D. Hiester // Annals of Biomedical Engineering. - 1997. - Vol. 25, № 4. - P. 678-689. https://doi.org/10.1007/BF02684845.
21. Person, A. Early Diagenetic Evolution of Bone Phosphate: An X-ray Diffractometry Analysis / A. Person, H. Bocherens, J.-F. Saliège // Journal of Archaeological Science. - 1995. - Vol. 22, № 2. - P. 211-221. https://doi.org/10.1006/jasc.1995.0023
22. Cheng, P. T. Pyrophosphate, phosphate ion interaction: effects on calcium pyrophosphate and calcium hydroxyapatite crystal formation in aqueous solutions / P. T. Cheng, K. Pritzker // Journal of Rheumatology. - 1983. - Vol. 10, № 5. - P. 769−777.
23. Barralet, J. Carbonate substitution in precipitated hydroxyapatite: an investigation into the effects of reaction temperature and bicarbonate ion concentration / J. Barralet, S. Best, W. Bonfield // Journal of Biomedical Materials Research. − 1998. − Vol. 41, № 1. − P. 79−86. https://doi.org/10.1002/(sici)1097-4636(199807)41:1<79::aid-jbm10>3.0.co;2-c
24. Greish, Y. E. Phase evolution during the formation of stoichiometric hydroxyapatite at 37.4 degrees C / Y. E. Greish, P. W. Brown // Journal of Biomedical Materials Research Part B: Applied Biomaterials. − 2003. − Vol. 67, № 1. − P. 632−637. https://doi.org/10.1002/jbm.b.10056
25. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite / R. M. Wilson, J. C. Elliott, S. E. P. Dowker, L. M. Rodriguez-Lorenzo // Biomaterials. − 2005. − Vol. 26, № 11. − P. 1317−1327. https://doi.org/10.1016/j.biomaterials.2004.04.038
26. Rhee, S. H. Nucleation of hydroxyapatite crystal through chemical interaction with collagen / S. H. Rhee, J. D. Lee, J. Tanaka // Journal of the American Ceramic Society. - 2000. - Vol. 83, № 11. - P. 2890-2892. https://doi.org/10.1111/j.1151-2916.2000.tb01656.x
27. Leikina, E. Type I collagen is thermally unstable at body temperature / E. Leikina, M. V. Mertts, N. V. Kuznetsova, S. Leikin // Proceedings of the National Academy of Sciences. - 2002. - Vol. 99, № 3. - P. 1314-1318. https://doi.org/10.1073/pnas.032307099
28. Collagen orientation and leather strength for selected mammals / K. H. Sizeland, M. M. Basil-Jones, R. L. Edmonds [et al.] // Journal of Agricultural and Food Chemistry. - 2013. - Vol. 61, № 4. - P. 887-892. https://doi.org/10.1021/jf304306729C
29. 3D Tortuosity and Diffusion Characterization in the Human Mineralized Collagen Fibril Using a Random Walk Model / F. Bini, A. Pica, A. Marinozzi, F. Marinozzi // Bioengineering (Basel). - 2023. - Vol. 10, № 5. - P. 558 (1-12). https://doi.org/10.3390/bioengineering10050558
30. TenHuisen, K. S. Variations in solution chemistry during calcium-deficient and stoichiometric hydroxyapatite formation from CaHPO4·2H2O and Ca4(PO4)2O / K. S. TenHuisen, P. W. Brown // Journal of Biomedical Materials Research. - 1997. - Vol. 36, № 2. - P. 233-241. https://doi.org/10.1002/(sici)1097-4636(199708)36:2<233::aid-jbm12>3.0.co;2-h
31. Fulmer, M. T. Effects of temperature on the formation of hydroxyapatite / M. T. Fulmer, P. W. Brown // Journal of Materials Research. - 1993. - Vol. 8, № 7. - P. 1687-1696. https://doi.org/10.1557/JMR.1993.1687
32. The effect of chemical potential on the thermodynamic stability of carbonate ions in hydroxyapatite / T. Kubota, A. Nakamura, K. Toyoura, K. Matsunaga // Acta Biomaterialia. - 2014. - Vol. 10, № 8. - P. 3716-3722. https://doi.org/10.1016/j.actbio.2014.05.007