Effect of temperature, microstructure and intramolecular dynamics of fibrillary collagen on apatitogenesis in scaffolds
https://doi.org/10.29235/1561-8331-2025-61-1-7-23
Abstract
The structure and physicochemical properties of scaffolds obtained from collagen gel using connective tissue sheaths of paravertebral tendons of Wistar rats were studied. The scaffolds were obtained at 37 °C (filmy) and 6 °C (volumetric). During hardening, the scaffolds form globular and extraglomerular fractions, which is typical for collagen gels obtained from tendon membranes. The ratio of the fraction volumes is determined by the pore structure and kinking of collagen fibrils. In the filmy scaffold, closed-type pores with weakened kinking are formed, which leads to the dominance of the extraglomerular scaffold. In the volumetric scaffold, kinking is intensified, open-type pores are formed, which determines the dominance of the globular scaffold. The morphogenetic factors of dominant fraction formation are ordering and increased rigidity, while the subdominant fractions are chaotization and elasticization of collagen frameworks. Fibrillar collagen undergoes extra- and intrafibrillar mineralization in situ with structuring of calcium phosphates along the apatite direction. The micromechanical properties of scaffolds induce extrafibrillar synthesis and determine the direction of apatitogenesis: stoichiometric hydroxyapatite is synthesized on rigid matrices, while carbonate-hydroxyapatites are synthesized on loose ones. Intrafibrillar synthesis in combination with temperature determines the degree of crystallinity and the composition of cationic and anionic sublattices of hydroxyapatites. On matrices of fibrillar collagen with strengthened bonds of peptide and carbonate groups, stoichiometric hydroxyapatite is formed, the degree of crystallinity of which is moderated by temperature − the higher the synthesis temperature, the higher the degree of crystallinity and saturation with calcium would be. On matrices with weakened peptide and C−O bonds, carbonate-hydroxyapatites are formed, in which substitutions in the anionic sublattice are regulated by temperature: at elevated temperatures, CO32– groups predominantly replace OH–, and at lower temperatures, PO43– groups.
Keywords
About the Authors
A. A. GaidashBelarus
Gaidash Alexander A. − D. Sc. (Medicine), Professor, Leading Researcher
9/1, Surganov Str., 220072, Minsk
A. I. Kulak
Belarus
Kulak Anatoly I. − Academician, D. Sc. (Chemistry), Professor, Director
9/1, Surganov Str., 220072, Minsk
V. K. Krut’ko
Belarus
Krut’ko Valentina K. − Ph. D. (Chemistry), Associate Professor, Head of the Laboratory
9/1, Surganov Str., 220072, Minsk
O. N. Musskaya
Belarus
Musskaya Olga N. − Ph. D. (Chemistry), Associate Professor, Leading Researcher
9/1, Surganov Str., 220072, Minsk
V. A. Kulchitsky
Belarus
Kulchitsky Vladimir A. − Academician, D. Sc. (Medicine), Professor
K. V. Skrotskaya
Belarus
Skrotskaya Katarina V. − Engineer
14, Leningradskaya Str., 220030, Minsk
L. V. Kulbitskaya
Belarus
Kulbitskaya Lyudmila V. − Senior Researcher
9/1, Surganov Str., 220072, Minsk
E. N. Krutsko
Belarus
Krutsko Evgeny N. − Senior Researcher
9/1, Surganov Str., 220072, Minsk
References
1. Sherman S., Maretaningtias D. A. In vitro and in vivo evaluation of carbonate apatite-collagen scaffolds with some cytokines for bone tissue engineering. Journal of Indian Prosthodontic Society, 2015, vol. 15, no. 4, pp. 349–355. https://doi.org/10.4103/09724052.171821
2. Matsuura A., Kubo T., Doi K., Hayashi K., Morita K., Yokota R., Hayashi H., Hirata I., Okazaki M., Akagawa Y. Bone formation ability of carbonate apatite-collagen scaffolds with different carbonate contents. Dental Materials Journal, 2009, vol. 28, no. 2, pp. 234–242. https://doi.org/10.4012/dmj.28.234
3. Diogo G. S., Senra E. L., Pirraco R. P., Canadas R. F., Fernandes E. M., Serra J., Pérez-Martín R. I., Sotelo C. G., Marques A. P., González P., Moreira-Silva J., Silva T. H., Reis R. L. Marine Collagen / Apatite Composite Scaffolds Envisaging Hard Tissue Applications. Marine Drugs, 2018, vol. 16, no. 8, pp. 269 (1–14). https://doi.org/10.3390/md16080269
4. Kuttappan S., Mathew D., Nair M. B. Biomimetic composite scaffolds containing bioceramics and collagen / gelatin for bone tissue engineering – a mini review. International Journal of Biological Macromolecules, 2016, vol. 93(Pt B), pp. 1390–1401. https://doi.org/10.1016/j.ijbiomac.2016.06.043
5. Sharifi E., Azami M., Kajbafzadeh A. M., Moztarzadeh F., Majidi F., Shamousi A., Karimi R., Ai J. Preparation of a biomimetic composite scaffold from gelatin / collagen and bioactive glass fibers for bone tissue engineering. Materials Science and Engineering: C., 2016, vol. 59, pp. 533–541. https://doi.org/10.1016/j.msec.2015.09.037
6. Philippart A., Boccaccini A. R., Fleck C., Schubert D. W. Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration: a review of the last 5 years. Expert Review of Medical Devices, 2015, vol. 12, no. 1, pp. 93–111. https://doi.org/10.1586/17434440.2015.958075
7. Hu C., Zilm M., Wei M. Fabrication of intrafibrillar and extrafibrillar mineralized collagen / apatite scaffolds with a hierarchical structure. Journal of Biomedical Materials Research Part A., 2016, vol. 104, no. 5, pp. 1153–1161. https://doi.org/10.1002/jbm.a.35649
8. Al-Munajjed A. A., Plunkett N. A., Gleeson J. P., Weber T., Jungreuthmayer C., Levingstone T., Hammer J., O’Brien F. J. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009, vol. 90, no. 2, pp. 584–591. https://doi.org/10.1002/jbm.b.31320
9. Niederberger M., Cölfen H. Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Physical Chemistry Chemical Physics, 2006, vol. 8, pp. 3271–3287. https://doi.org/10.1039/b604589h
10. Liu Y., Kim Y. K., Dai L., Li N., Khan S. O., Pashley D. H., Tay F. R. Hierarchical and non-hierarchical mineralisation of collagen. Biomaterials, 2011, vol. 32, pp. 1291–1300. https://doi.org/10.1016/j.biomaterials.2010.10.018
11. Yu L., Martin I. J., Kasi R. M., Wei M. Enhanced Intrafibrillar Mineralization of Collagen Fibrils Induced by Brushlike Polymers. ACS Applied Materials and Interfaces, 2018, vol. 10, no. 34, pp. 28440–28449. https://doi.org/10.1021/acsami.8b10234
12. Wang Y., Manh N. V., Wang H., Zhong X., Zhang X., Li C. Synergistic intrafibrillar / extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects. International Journal of Nanomedicine, 2016, vol. 11, pp. 2053–2067. https://doi.org/10.2147/IJN.S102844
13. Ma J., Wang J., Ai X., Zhang S. Biomimetic self-assembly of apatite hybrid materials: from a single molecular template to bi-/multi-molecular templates. Biotechnology Advances, 2014, vol. 32, no. 4, pp. 744–760. https://doi.org/10.1016/j.biotechadv.2013.10.014
14. Rollo J. M. D. A., Boffa R. S., Cesar R., Schwab D. C., Leivas T. P. Assessment of Trabecular Bones Microarchitectures and Crystal Structure of Hydroxyapatite in Bone Osteoporosis with Application of the Rietveld Method. Procedia Engineering, 2015, vol. 110, pp. 8–14. https://doi.org/10.1016/j.proeng.2015.07.003
15. Du T., Niu Y., Liu Y., Yang H., Qiao A., Niu X. Physical and Chemical Characterization of Biomineralized Collagen with Different Microstructures. Journal of Functional Biomaterials, 2022, vol. 13, pp. 57 (1–11). https://doi.org/10.3390/jfb13020057
16. Xia Z., Yu X., Jiang X., Brody H. D., Rowe D. W., Wei M. Fabrication and characterization of biomimetic collagen–apatite scaffolds with tunable structures for bone tissue engineering. Acta Biomaterialia, 2013, vol. 9, no. 7, pp. 7308–7319. https://doi.org/10.1016/j.actbio.2013.03.038
17. Glaser J. R., Glaser E. M. Stereology, morphometry, and mapping: the whole is greater than the sum of its parts. Journal of chemical neuroanatomy, 2000, vol. 20, no. 1, pp. 115–126. https://doi.org/10.1016/s0891-0618(00)00073-9
18. Panteleev V. G., Egorova O. V., Klykova E. I. Computer microscopy. Moscow, Tekhnosfera Publ., 2005. 303 p. (in Russian).
19. Basil-Jones M. M., Edmonds R. L., Cooper S. M., Haverkamp R. G. Collagen fibril orientation in ovine and bovine leather affects strength: A small angle X-ray scattering (SAXS) study. Journal of Agricultural and Food Chemistry, 2011, vol. 59, no. 18, pp. 9972–9979. https://doi.org/10.1021/jf202579b
20. Sacks M. S., Smith D. B., Hiester E. D. A small angle light scattering device for planar connective tissue microstructural analysis. Annals of Biomedical Engineering, 1997, vol. 25, no. 4, pp. 678–689. https://doi.org/10.1007/BF02684845
21. Person A., Bocherens H., Saliège J.-F. Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. Journal of Archaeological Science, 1995, vol. 22, no. 2, pp. 211–221. https://doi.org/10.1006/jasc.1995.0023
22. Cheng P. T., Pritzker K. P. Pyrophosphate, phosphate ion interaction: effects on calcium pyrophosphate and calcium hydroxyapatite crystal formation in aqueous solutions. Journal of Rheumatology, 1983, vol. 10, no. 5, pp. 769−777.
23. Barralet J., Best S., Bonfield W. Carbonate substitution in precipitated hydroxyapatite: an investigation into the effects of reaction temperature and bicarbonate ion concentration. Journal of Biomedical Materials Research, 1998, vol. 41, no. 1, pp. 79–86. https://doi.org/10.1002/(sici)1097-4636(199807)41:1<79::aid-jbm10>3.0.co;2-c
24. Greish Y. E., Brown P. W. Phase evolution during the formation of stoichiometric hydroxyapatite at 37.4 degrees C. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2003, vol. 67, no. 1, pp. 632−637. https://doi.org/10.1002/jbm.b.10056
25. Wilson R. M., Elliott J. C., Dowker S. E. P., Rodriguez-Lorenzo L. M. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials, 2005, vol. 26, no. 11, pp. 1317−1327. https://doi.org/10.1016/j.biomaterials.2004.04.038
26. Rhee S. H., Lee J. D., Tanaka J. Nucleation of hydroxyapatite crystal through chemical interaction with collagen. Journal of the American Ceramic Society, 2000, vol. 83, no. 11, pp. 2890–2892. https://doi.org/10.1111/j.1151-2916.2000.tb01656.x
27. Leikina E., Mertts M. V., Kuznetsova N. V., Leikin S. Type I collagen is thermally unstable at body temperature. Proceedings of the National Academy of Sciences, 2002, vol. 99, no. 3, pp. 1314–1318. https://doi.org/10.1073/pnas.032307099
28. Sizeland K. H., Basil-Jones M. M., Edmonds R. L., Cooper S. M., Kirby N., Hawley A., Haverkamp R. G. Collagen orientation and leather strength for selected mammals. Journal of Agricultural and Food Chemistry, 2013, vol. 61, no. 4, pp. 887–892. https://doi.org/10.1021/jf304306729C
29. Bini F., Pica A., Marinozzi A., Marinozzi F. 3D Tortuosity and Diffusion Characterization in the Human Mineralized Collagen Fibril Using a Random Walk Model. Bioengineering (Basel), 2023, vol. 10, no. 5, pp. 558 (1–12). https://doi.org/10.3390/bioengineering10050558
30. TenHuisen K. S., Brown P. W. Variations in solution chemistry during calcium-deficient and stoichiometric hydroxyapatite formation from CaHPO4·2H2O and Ca4(PO4)2O. Journal of Biomedical Materials Research, 1997, vol. 36, no. 2, pp. 233–241. https:// doi.org/10.1002/(sici)1097-4636(199708)36:2<233::aid-jbm12>3.0.co;2-h
31. Fulmer M. T., Brown P. W. Effects of temperature on the formation of hydroxyapatite. Journal of Materials Research, 1993, vol. 8, no. 7, pp. 1687–1696. https://doi.org/10.1557/JMR.1993.1687
32. Kubota T., Nakamura A., Toyoura K., Matsunaga K. The effect of chemical potential on the thermodynamic stability of carbonate ions in hydroxyapatite. Acta Biomaterialia, 2014, vol. 10, no. 8, pp. 3716–3722. https://doi.org/10.1016/j.actbio.2014.05.007