Systems of competitive immunofluorometric assay of Salmonella enterica bacteria, comprising conjugates of antibodies with europium chelate
https://doi.org/10.29235/1561-8331-2025-61-2-141-153
Abstract
Bioanalytical systems specific to Salmonella enterica bacteria have been developed and studied. The systems are based on the immunochemical binding of lipopolysaccharide (LPS) antigens of these pathogenic microorganisms to mono- and polyclonal antibodies conjugated with a europium chelate. The quantitative determination of the cells was carried out in immunoassay systems by measuring the Eu3+ time-resolved fluorescence (dissociation-enhanced lanthanide fluorescence immunoassay, DELFIA) systems. In the DELFIA microplate system, comprising labeled polyclonal antibodies in solution and a LPS-protein conjugate on the solid-phase, the following analytical parameters were achieved: cell concentration measurement range – from 104 to 107 CFU/ml, sensitivity (IC50) – 3 · 105 CFU/ml, the limit of detection (IC10) – 1.5 · 104 CFU/ml, and the coefficient of variation – from 4,5 to 8.0 %. The broad specificity of this system enabled to detect Salmonella enterica of various serotypes. The possibility of testing samples of culture medium and milk without prior dilution was demonstrated. The recovery rate of samples containing Salmonella enterica was found to be 88–110 %. The presented development can serve as the basis for a practical kit of reagents to monitor Salmonella enterica bacteria in food products.
Keywords
About the Authors
T. S. SerchenyaBelarus
Tatyana S. Serchenya – Ph. D. (Chemistry), Associate Professor, Leading Researcher, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus.
5/2, Academician V. F. Kuprevich Str., 220084, Minsk
A. A. Kasmach
Belarus
Anastasia A. Kosmach – Junior Researcher, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus.
5/2, Academician V. F. Kuprevich Str., 220084, Minsk
V. S. Lapina
Belarus
Victoryia S. Lapina – Researcher, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus.
5/2, Academician V. F. Kuprevich Str., 220084, Minsk
T. N. Bakayeva
Belarus
Tatsiana N. Bakayeva – Researcher, Research Institute of Hygiene, Toxicology, Epidemiology, Virology and Microbiology.
23, Filimonov Str., 220114, Minsk
O. V. Sviridov
Belarus
Oleg V. Sviridov – D. Sc. (Chemistry), Professor, Head of the Laboratory, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus.
5/2, Academician V.F. Kuprevich Str., 220084
References
1. Lamichhane B., Mawad A. M. M., Saleh M., Kelley W. G., Harrington P. J., Lovestad C. W., Amezcua J., Sarhan M. M., El Zowalaty M. E., Ramadan H., Morgan M., Helmy Y. A. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics (Basel), 2024, vol. 13, no. 1, pp. 76. https://doi.org/10.3390/antibiotics13010076
2. Chlebicz A., Śliżewska K. Campylobacteriosis, Salmonellosis, Yersiniosis, and Listeriosis as Zoonotic Foodborne Diseases: A Review. International Journal of Environmental Research and Public Health, 2018, vol. 15, no. 5, pp. 863. https://doi.org/10.3390/ijerph15050863
3. Balasubramanian R., Im J., Lee J.-S., Jeon H. J., Mogeni O. D., Kim J. H., Rakotozandrindrainy R., Baker S., Marks F. The global burden and epidemiology of invasive non-typhoidal Salmonella infections. Human Vaccines & Immunotherapeutics, 2019, vol. 15, no. 6, pp. 1421–1426. https://doi.org/10.1080/21645515.2018.1504717
4. Issenhuth-Jeanjean S., Roggentin P., Mikoleit M., Guibourdenche M., de Pinna E., Nair S., Fields P. I., Weill F.-X. Supplement 2008–2010 (no. 48) to the White–Kauffmann–Le Minor scheme. Research in Microbiology, 2014, vol. 165, no. 7, pp. 526–530. https://doi.org/10.1016/j.resmic.2014.07.004
5. Grimont P., Weill F.-X. Antigenic Formulae of the Salmonella serovars. (9th ed.). Paris: WHO Collaborating Centre for Reference and Research on Salmonella, Institute Pasteur, 2007. 166 p.
6. Chugunova E. O., Tatarnikova N. A., Maul O. G. Antigenic strucrure of Salmonellas. Fundamental’nye Issledovaniya = Fundamental research, 2014, no. 11–9, pp. 1971–1974 (in Russian).
7. Wang M., Zhang Y., Tian F., Liu X., Du S., Ren G. Overview of Rapid Detection Methods for Salmonella in Foods: Progress and Challenges. Foods, 2021, vol. 10, no. 10, pp. 2402. https://doi.org/10.3390/foods10102402
8. Mkangara M. Prevention and Control of Human Salmonella enterica Infections: An Implication in Food Safety. International Journal of Food Science, 2023, vol. 2023, pp. 1–26. https://doi.org/10.1155/2023/8899596
9. Wang M., Znang Y., Tian F., Liu X., Du S., Ren G. Bacteriological Analytical Manual (BAM). Chapter 5: Salmonella. FDA, 2024. Available: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-5-salmonella (accessed 31 July 2024).
10. Rajapaksha P., Elbourne A., Gangadoo S., Brown R., Cozzolino D., Chapman J. A review of methods for the detection of pathogenic microorganisms. Analyst, 2019, vol. 144, no. 2, pp. 396–411. https://doi.org/10.1039/C8AN01488D
11. Paniel N., Noguer T. Detection of Salmonella in Food Matrices, from Conventional Methods to Recent Aptamer-Sensing Technologies. Foods, 2019, vol. 8, no. 9, pp. 371. https://doi.org/10.3390/foods8090371
12. Shen Y., Xu L., Li Y. Biosensors for rapid detection of Salmonella in food: A review. Comprehensive Reviews in Food Science and Food Safety, 2021, vol. 20, no. 1, pp. 149–197. https://doi.org/10.1111/1541-4337.12662
13. Brainina K. Z., Kozitsina A. N., Glazyrina Y. A. Hybrid Electrochemical/Magnetic Assay for Salmonella Typhimurium Detection. IEEE Sensors Journal, 2010, vol. 10, no. 11, pp. 1699–1704. https://doi.org/10.1109/JSEN.2010.2046410
14. D’Aoust J.-Y., Sewell A. M., Warburton D. W. A comparison of standard cultural methods for the detection of foodborne Salmonella. International Journal of Food Microbiology, 1992, vol. 16, no. 1, pp. 41–50. https://doi.org/10.1016/0168-1605(92)90124-L
15. Zhang H., Li H., Zhu H., Pekárek J., Podešva P., Chang H., Neuzil P. Revealing the secrets of PCR. Sensors and Actuators B: Chemical, 2019, vol. 298, pp. 126924. https://doi.org/10.1016/j.snb.2019.126924
16. Zhong J., Zhao X. Isothermal Amplification Technologies for the Detection of Foodborne Pathogens. Food Analytical Methods, 2018, vol. 11, pp. 1543–1560. https://doi.org/10.1007/s12161-018-1177-2
17. Choi D., Tsang R. S., Ng M. H. Sandwich capture ELISA by a murine monoclonal antibody against a genus-specific LPS epitope for the detection of different common serotypes of salmonellas. Journal of Applied Bacteriology, 1992, vol. 72, no. 2, pp. 134–138. https://doi.org/10.1111/j.1365-2672.1992.tb01814.x
18. Wu X., Wang W., Liu L., Kuang H., Xu C. Monoclonal antibody-based cross-reactive sandwich ELISA for the detection of Salmonella spp. in milk samples. Analytical Methods, 2015, vol. 7, no. 21, pp. 9047–9053. https://doi.org/10.1039/C5AY01923K
19. Kiseleva E. P., Mikhailopulo K. I., Sviridov O. V. A new test system for Salmonella detection in food products by competitive immonoassay. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya biyalagichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2025, vol. 70, no. 1, pp. 55–68 (in Russian). https://doi.org/10.29235/1029-8940-2025-70-1-55-68
20. Hou S., Wang S., Zhao X., Li W., Gao J., Wang Y., Zhang R., Gong L., Jiang S., Zhu Y. Establishment of indirect ELISA method for Salmonella antibody detection from ducks based on PagN protein. BMC Veterinary Research, 2022, vol. 18, no. 1, pp. 424. https://doi.org/10.1186/s12917-022-03519-7
21. Mirhosseini S. A., Fooladi A. A. I., Aman J. Production of recombinant flagellin to develop ELISA-based detection of Salmonella Enteritidis. Brazilian Journal of Microbiology, 2017, vol. 48, no. 4, pp. 774–781. https://doi.org/10.1016/j.bjm.2016.04.033
22. Wang W., Liu L., Song S., Xu L., Kuang H., Zhu J., Xu C. Gold nanoparticle-based strip sensor for multiple detection of twelve Salmonella strains with a genus-specific lipopolysaccharide antibody. Science China Materials, 2016, vol. 59, no. 8, pp. 665–674. https://doi.org/10.1007/s40843-016-5077-0
23. Kuhn K. G., Falkenhorst G., Ceper T. H., Dalby T., Ethelberg S., Mølbak K., Krogfelt K. A. Detecting non-typhoid Salmonella in humans by ELISAs: a literature review. Journal of Medical Microbiology, 2012, vol. 61, no. 1, pp. 1–7. https://doi.org/10.1016/j.bjm.2016.04.033
24. Garbuz O. S., Sviridov O. V. Lanthanide immunofluorimetric assay: scientific background and technical principles. ARSmedica, 2011, no. 13, pp. 51–61 (in Russian).
25. Kuprienko O. S., Dubovskaya L. V., Shabunya P. S., Fatykhova S. A., Sviridov O. V. Functionalized metal chelates based on diethylenetriaminetetraacetic acids for chemical modification of proteins and small biomolecules. Russian Journal of Bioorganic Chemistry, 2015, vol. 41, no. 6, pp. 607–616. https://doi.org/10.1134/s1068162015060072
26. Serchenya T. S., Akhremchuk K. U., Valentovich L. N., Lapina V. S., Sviridov O. V. Combined systems of polymerase chain reaction and a time-resolved fluorescence immunoassay or membrane immunochromatography for quantitative determination of Salmonella enterica bacterial DNA. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2024, vol. 60, no. 4, pp. 314–325 (in Russian). https://doi.org/10.29235/1561-8331-2024-60-4-314-325