Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Dependence of fire-heat protective properties of styrene-acrylic intumescent composite material on the ratio of main components

https://doi.org/10.29235/1561-8331-2025-61-4-271-285

Abstract

The method of mathematical planning of the experiment was employed to optimize the fire-resistant and thermal insulating properties of the basic fire-retardant thermal foamable composite (FRTC). The variable factors included the main components of the composite formulation: the content (wt.%) of styrene-acrylic binder, gas-coke-forming system and thermal foaming agent. Using an adequate regression model of a full factorial experiment, the optimal ratios of components in the FRTC formulation were determined. The response function surfaces (weight loss, maximum temperature increase during the fire test, volume-foaming coefficient and relative compression deformation of the intumescent residue) affecting the fire resistance of the composite were constructed. It was shown that the optimized composite exhibited enhanced fire resistance and improved physical-mechanical characteristics of the thermolysis products compared to the basic FRTC, along with higher thermal stability, which collectively significantly improve its thermal insulating efficiency.

About the Authors

V. V. Bogdanova
Research Institute for Physical Chemical Problems of BSU
Belarus

Bogdanova Valentina V. – Dr. Sc. (Chemistry), Professor, Head of the Laboratory

14, Leningradskaya Str., 220006, Minsk



O. I. Kobets
Research Institute for Physical Chemical Problems of BSU
Belarus

Kobets Olga I. – Ph. D. (Chemistry), Leading Researcher

14, Leningradskaya Str., 220006, Minsk



A. S. Platonov
University of Civil Protection of the Ministry for Emergency Situations of Belarus
Belarus

Platonov Aleksandr S. – Ph. D. (Physics and Mathe- matics), Associate Professor, Leading Researcher

25, Mashinostroiteley Str., 220118, Minsk



A. B. Perevoznikova
Belarusian State University
Belarus

Perevoznikova Anna B. – Postgraduate Student

14, Leningradskaya Str., 220006, Minsk



O. N. Buraya
Research Institute for Physical Chemical Problems of BSU
Belarus

Buraya Oksana N. – Researcher

14, Leningradskaya Str., 220006, Minsk



References

1. Mel’der E. V., Sivenkov A. B. Efficiency of a combination of intumescent coatings for fire protection of steel structures. Technology of Technosphere Safety, 2022, no. 1 (95), pp. 49–65 (in Russian). https://doi.org/10.25257/TTS.2022.1.95.49-65

2. Vakhitova L., Kalafat K., Vakhitov R., Drizhd V. Improving the fire-retardant performance of industrial reactive coatings for steel building structures. Heliyon, 2024, vol. 10, iss. 4, art. e34729. https://doi.org/10.1016/j.heliyon.2024.e34729.

3. Tang G., Shang C., Qin Y., Lai J. Current Advances in Flame-Retardant Performance of Tunnel Intumescent Fireproof Coatings: A Review. Coatings, 2025, vol. 15, no. 1, pp. 1–33. https://doi.org/10.3390/coatings15010099.

4. Garashchenko A. N., Berlin A. A., Kul’kov A. A. Methods and means for providing required fire-safety indices of polymer composite structures. Pozharovzryvobezopasnost = Fire and Explosion Safety, 2019, vol. 28, no. 2, pp. 9–30 (in Russian). https://doi.org/10.18322/pvb/2019.28.02.9-30

5. Bogdanova V. V., Kobets O. I., Buraya O. N., Ustinov A. A., Zybina O. A. Intumescent compounds for fireproofing of polymer pipelines. Magazine of Civil Engineering, 2022, no. 8, pp. 1–11. art. 11607. https://doi.org/10.34910/MCE.116.7

6. Novak S., Drizhd V., Dobrostan O. Thermal state of steel structures with a combined fire protection system under conditions of fire exposure. Eastern-European Journal of Enterprise Technologies, 2020, vol. 3, no. 10, pp. 17–25. https://doi.org/10.15587/1729-4061.2020.206373

7. Li Y., Cao C.-F., Chen Z.-Y., Liu S.-C., Bae J., Tang L.-C. Water-borne Intumescent Fire Retardant Polymer Composite Coatings: A Review. Polymers, 2024, vol. 16, iss. 16, art. 2353. https://doi.org/10.3390/polym16162353

8. Zubielewicz M., Langer E., Królikowska A. Trends in the development of intumescent paints for the protection of steel structures and new related with them expectations. Ochrona przed Korozją [Corrosion Protection], 2021, no. 7, pp. 212–220. https://doi.org/10.15199/40.2021.7.1

9. Pimenta J. T., Goncalves C., Hiliou L., Coelho J. F. J., Magalhaes F. D. Effect of binder on performance of intumescent coatings. Journal of Coatings Technology and Research, 2015, vol. 13, pp. 227–238. https://doi.org/10.1007/s11998-015-9737-5

10. Bessarabov V., Taran N., Zagoriy G., Vakhitova L. Definition of the thermal and fire-protective properties of ethy- lene-vinyl acetate copolymer nanocomposites. Eastern-European Journal of Enterprise Technologies, 2019, vol. 1, no. 6, pp. 13–20. https://doi.org/10.15587/1729-4061.2019.154676

11. Sabee M. M. S. M., Itam Z., Beddu S., Zahari N. M., Kamal N. L. M., Mohamad D., Zulkepli N. A., Shafiq M. D., Hamid Z. A. A. Flame Retardant Coatings: Additives, Binders, and Fillers. Polymers, 2022, vol. 14, no. 14, pp. 2911–2944. https://doi.org/10.3390/polym14142911

12. Dong F., Song Q., Ma L. Smoke Suppression Properties of Fe2O3 on Intumescent Fire-Retardant Coatings of Styrene– Acrylic Emulsion. Coatings, 2024, vol. 14, no. 7, pp. 850–863. https://doi.org/10.3390/coatings14070850

13. Bogdanova V. V., Kobets O. I., Buraya O. N., Perevoznikova A. B. The influence of the nature of film-forming agents on the thermal protection properties of foamed compositions. Goreniye i vzryv = Combustion and explosion, 2022, vol. 15, no. 1, pp. 37–46 (in Russian). https://doi.org/10.30826/CE22150105

14. Diaconu B., Cruceru M., Anghelescu L. Fire Retardance Methods and Materials for Phase Change Materials: Performance, Integration Methods and Applications – A Literature Review. Fire, 2023, vol. 6, no. 5, art. 175. https://doi.org/10.3390/fire6050175

15. Bogdanova V. V., Kobets O. I., Perevoznikova A. B. The influence of frame-forming additives on the flammability, thermal properties and mechanical strength of the heating products of thermally foamed composites. Perspektivnyye polimernyye kompozitsionnyye materialy. Al’ternativnyye tekhnologii. Pererabotka. Primeneniye. Ekologiya: Kompozit-2022 : sb. mater. [Promising polymer composite materials. Alternative technologies. Processing. Application. Ecology: Composite-2022 : collection of materials]. Engels, 2022, pp. 161–165 (in Russian).

16. Mastalska-Popławska J. Effect of Modified Halloysite/Expandable Graphite Addition on Thermal and Intumescent Properties of the Fire-Resistant Paints for Steel. Arabian Journal for Science and Engineering, 2023, vol. 48, pp. 16087– 16095. https://doi.org/10.1007/s13369-023-07998-0

17. Gillani Q. F., Ahmad F., Mutalib M. I. A., Melor P. S., Ullah S., Arogundade A. Effect of Dolomite Clay on Thermal Performance and Char Morphology of Expandable Graphite Based Intumescent FireRetardant Coatings. Procedia Engineering, 2016, vol. 148, pp. 146–150. https://doi.org/10.1016/j.proeng.2016.06.505

18. Zoleta J. B., Itao G. B., Resabal V. J. T., Lubguban A. A., Corpuz R. D., Ito M., Hiroyoshi N., Tabelin C. B. Improved pyrolysis behavior of ammonium polyphosphate-melamine-expandable (APP-MEL-EG) intumescent fire retardant coating system using ceria and dolomite as additives for I-beam steel application. Heliyon, 2019, vol. 6, iss. 1, art. e03119. https://doi.org/10.1016/j.heliyon.2019.e03119

19. Zhan W., Xu Z., Chen L., Li L., Kong Q., Chen M., Zhang Q., Jiang J. Research progress of carbon-based materials in intumescent fire-retardant coatings: A review. European Polymer Journal, 2024, vol. 220, art. 113486. https://doi.org/10.1016/j.eurpolymj.2024.113486

20. Łopinski J., Schmidt B., Bai Y., Kowalczyk K. Effect of the B : Zn : H2O Molar Ratio on the Properties of Poly(Vinyl Acetate) and Zinc Borate-Based Intumescent Coating Materials Exposed to a Quasi-Real Cellulosic Fire. Polymers, 2020, vol. 12, iss. 11, pp. 2542–2556. https://doi.org/10.3390/polym12112542

21. Lucherini A., de Silva D. Modelling intumescent coatings for the fire protection of structural systems: a review. Journal of Structural Fire Engineering, 2024, vol. 15, no. 4, pp. 483–507. https://doi.org/10.1108/JSFE-10-2023-0038

22. Kuznetsova D. A., Yashin N. V., Avdeyev V. V. Multifactorial quantitative optimization of fire protection efficiency of intumescent fire protection materials. Pozharovzryvobezopasnost’ = Fire and Explosion Safety, 2024, vol. 33, no. 3, pp. 11–21 (in Russian). https://doi.org/10.22227/0869-7493.2024.33.03.11-21

23. Bogdanova V. V., Kobets O. I., Platonov A. S., Perevoznikova A. B. Optimization of fire-resistant and thermal insulation properties of foamed composites using mathematical planning of experiments. Goreniye i vzryv = Combustion and explosion, 2023, vol. 16, no. 3, pp. 62–72 (in Russian). https://doi.org/10.30826/CE23160306

24. Zverev V. G., Teploukhov A. V., Tsimbalyuk A. F. Study of the properties and fire protection efficiency of intumescent coatings. Izvestiya vysshikh uchebnykh zavedeniy. Fizika [News of Higher Education Institutions. Physics], 2014, vol. 57, no. 8-2, pp. 148–153 (in Russian).

25. Volodarskiy E. T., Malinovskiy B. N., Tuz Yu. M. Planning and organizing a measurement experiment. Kiev, Vishha shkola Publ., 1987. 280 p. (in Russian).

26. Kononyuk A. E. Fundamentals of Scientific Research (General Theory of Experiment). Book. 2. Kyiv, 2011. 452 p. (in Russian).


Review

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)