СИНТЕЗ (E,E)-АЗОМЕТИНОКСИМОВ НА ОСНОВЕ ОКСИМА 4-АМИНОАЦЕТОФЕНОНА


https://doi.org/10.29235/1561-8331-2018-54-2-168-179

Полный текст:


Аннотация

Оксим 4-аминоацетофенона является удобным и доступным реагентом для химической модификации замещенных ароматических альдегидов с целью получения лигандов для комплексообразования с переходными металлами. Взаимодействием оксима 4-аминоацетофенона с альдегидами ванилинового ряда, в среде кипящего абсолютного метанола в присутствии каталитических количеств ледяной уксусной кислоты были синтезированы (E,E)-азометины с выходами 70–85 %. Взаимодействием 4-аминоацетофенона с 9-фенантренкарбальдегидом, ферроценкарбальдегидом, 5-фенилизоксазол-3-карбальдегидом и 5-(п-толил)изоксазол-3-карбальдегидом были получены соответствующие (E,E)-азометиноксимы c выходом 77–84 %. Ацилированием оксима (E)-1-{4-(E)-бензо[d][1,3]диоксол-5-илметиленаминофенил}этан-1-она хлорангидридом 4,5-дихлоризотиазол-3-карбоновой кислоты в растворе сухого диэтилового эфира в присутствии триэтиламина был синтезирован соответствующий сложный эфир с вы- ходом 84 %. Путем квантово-химических расчетов с использованием метода DFT с применением уровня теории B3LYP1/MIDI, программного пакета GAMESS и базисного набора MIDI установлены наиболее термодинамически устойчивые изомеры ряда синтезированных соединений. При расчетах проводили оптимизацию всех геометрических параметров до достижения минимумов полных электронных энергий (E,E)-, (E,Z)-(Z,E)- и (Z,Z)-азометиноксимов.

Об авторах

Е. А. Дикусар
Институт физико-органической химии, Национальная академия наук Беларуси.
Беларусь

Дикусар Евгений Анатольевич – канд. хим. наук, ст. науч. сотрудник.

ул. Сурганова, 13, 220072, Минск.



Л. Н. Филиппович
Институт физико-органической химии, Национальная академия наук Беларуси.
Беларусь

Филиппович Людмила Николаевна – канд. хим. наук, науч. сотрудник.

ул. Сурганова, 13, 220072, Минск.



С. Н. Шахаб
Институт физико-органической химии, Национальная академия наук Беларуси.
Беларусь

Шахаб Сиямак Насер – канд. хим. наук, профессор Российской академии естествознания, вед. науч. сотрудник.

ул. Сурганова, 13, 220072, Минск. 



С. К. Петкевич
Институт физико-органической химии, Национальная академия наук Беларуси .
Беларусь

Петкевич Сергей Константинович – канд. хим. наук, ст. науч. сотрудник.

ул. Сурганова, 13, 220072, Минск.



С. Г. Стёпин
Витебский государственный ордена Дружбы народов медицинский университет.
Беларусь

Стёпин Святослав Генрихович – канд. хим. наук, доцент кафедры органической химии.

пр-т Фрунзе, 27, 210023, Витебск.  



Список литературы

1. Zhao, L. 1-(4-{[(E)-4-Methylbenzylidene]amino}phenyl)ethanone oxime / L. Zhao, S. W. Ng // Acta Crystall. Sec. E. Struct. Reports Online. – 2010. – Vol. 66, № 10. – P. o2473. DOI: 10.1107/s1600536810034598

2. Aakeröy, C. B. Synthesis of ketoximes via a solvent-assisted and robust mechanochemical pathway / C. B. Aakeröy, Sinha A. S. // RSC Adv. – 2013. – Vol. 3, № 22. – P. 8168–8171. DOI: 10.1039/c3ra40585k

3. Aakeröy, C. B. Syntheses and Crystal Structures of New “Extended” Building Blocks for Crystal Engineering: (Pyridy- lmethylene)aminoacetophenone Oxime Ligands / C. B. Aakeröy, A. M. Beatty, D. S. Leinen // Cryst. Growth Des. – 2001. – Vol. 1, № 1. – P. 47–52. DOI: 10.1021/cg0055068

4. Canpolat, E. Studies on Mononuclear Chelates Derived from Substituted Schiff Bases Ligands (Part 3). Synthesis and Characterization of a New 5-Nitrosalicylidene-p-aminoacetophenoneoxime and Its Complexes with Co(II), Ni(II), Cu(II), and Zn(II) / E. Canpolat, M. Kaya // Russ. J. Coord. Chem. – 2005. – Vol. 31, № 6. – P. 415–419. DOI: 10.1007/s11173-005-0113-3

5. Gholinejad, M. Magnetic Nanoparticles Supported Oxime Palladycle as a Highly Efficient and Separble Catalyst for Room Temperature Suzuki-Miyaura Coupling Reaction in Aqueous Media / M. Gholinejad, M. Razeghi, C. Najera // RSC Adv. – 2015. – Vol. 5, № 61. – P. 49568–49576. DOI: 10.1039/c5ra05077d

6. Common and less-common coordination modes of the typical chelating and heteroaromatic ligands / A. D. Granovskii [et al.] // Coord. Chem. Rev. – 1998. – Vol. 173, № 1. – P. 31–77. DOI: 10.1016/s0010-8545(98)00084-8

7. Metal Complexes as Ligands / A. D. Garnovskii [et al.] // J. Coord. Chem. – 2002. – Vol. 55, № 10. – P. 1119–1134. DOI: 10.1080/0095897021000022195

8. Woziwodzka, A. Heterocyclic Aromatic Amines Heterocomplexation with Biologically Active Aromatic Compounds and Its Possible Role in Chemoprevention / A. Woziwodzka, G. Gołuński, J. Piosik // ISRN Biophys. – 2013. – Vol. 2013. – P. 1–11. DOI: 10.1155/2013/740821

9. Steel, P. J. Aromatic nitrogen heterocycles as bridging ligands; a survey / P. J. Steel // Coord. Chem. Rev. – 1990. – Vol. 106. – P. 227–265. DOI: 10.1016/0010-8545(60)80005-7

10. Steel, P. J. Nitrogen Heterocycles as Building Blocks for New Metallosupramolecular Architectures / P. J. Steel // Molecules. – 2004. – Vol. 9, № 6. – P. 440-448. DOI: 10.3390/90600440

11. Steel, P. J. Ligand Design in Multimetallic Architectures: Six Lessons Learned / P. J. Steel // Acc. Chem. Res. – 2005. – Vol. 38, № 4. – P. 243–250. DOI: 10.1021/ar040166v

12. Navarro, J. A. R. Simple 1:1 and 1:2 complexes of metal ions with heterocycles as building blocks for discrete mole- cular as well as polymeric assemblies / J. A. R. Navarro, B. Lippert // Coord. Chem. Rev. – 2001. – Vol. 222, № 1. – P. 219–250. DOI: 10.1016/s0010-8545(01)00390-3

13. César, V. Chiral N-heterocyclic carbenes as stereodirecting ligands in asymmetric catalysis / V. César, S. Bellemin-Laponnaz, L. H. Gade // Chem. Soc. Rev. – 2004. – Vol. 33, № 9. – P. 619–636. DOI: 10.1039/b406802p

14. Sterically Demanding, Bioxazoline-Derived N-Heterocyclic Carbene Ligands with Restricted Flexibility for Cata- lysis / G. Altenhoff [et al.] // J. Am. Chem. Soc. – 2004. – Vol. 126, № 46. – P. 15195–15201. DOI: 10.1021/ja045349r

15. Zhou, H. C. Metal–Organic Frameworks (MOFs) / H. C. Zhou, S. Kitagawa // Chem. Soc. Rev. – 2014. – Vol. 43, № 16. – P. 5415–5418. DOI: 10.1039/c4cs90059f

16. Würtz, S. Surveying Sterically Demanding N-Heterocyclic Carbene Ligands with Restricted Flexibility for Palladium-catalyzed Cross-Coupling Reactions / S. Würtz, F. Glorius // Acc. Chem. Res. – 2008. – Vol. 41, № 11. – P. 1523–1533. DOI: 10.1021/ar8000876

17. Optical, Struktural, and Electrical Properties of Aromatic Triphenylamine-Based Poly(azomethine)s in Thin Layers / M. Palewicz [et al.] // Act. Phys. Polon. A. – 2012. – Vol. 121, № 2. – P. 439–444. DOI: 10.12693/aphyspola.121.439

18. Yang, C. J. Conjugated aromatic poly(azomethines). 1. Characterization of structure, electronic spectra, and proces- sing of thin films from soluble complexes / C. J. Yang, S. A. Jenekhe // Chem. Mater. – 1991. – Vol. 3, № 5. – P. 878–887. DOI: 10.1021/cm00017a025

19. Polyconjugated Azomethine Layers by Sequential Condensation of α,α′-Dialdehyde-oligothiophenes and 4,4′-Diamino-diphenylenes on ITO/Glass Electrodes / G. Zotti [et al.] // Chem. Mater. – 2002. – Vol. 14, № 11. – P. 4550–4557. DOI: 10.1021/cm020619v

20. Small-molecule azomethines: organic photovoltaics via Schiff base condensation chemistry / M. L. Petrus [et al.] // J. Mater. Chem. A. – 2014. – Vol. 2, № 25. – P. 9474–9477. DOI: 10.1039/c4ta01629g

21. General Atomic and Molecular Electronic-Structure System / M. W. Shmidt [et al.] // J. Comput. Chem. − 1993. − Vol. 14. − N 7. − P. 1347–1363. DOI: 10.1002/jcc.540141112

22. Huzinaga, S. Gaussian Basis Sets for Molecular Calculations / S. Huzinaga, J. M. Andzelm, M. Klobukowski. − Amsterdam: Elsevier, 1984.


Дополнительные файлы

Просмотров: 104

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)