Preview

Известия Национальной академии наук Беларуси. Серия химических наук

Пашыраны пошук

СИНТЕЗ НОВЫХ 6-N-ЗАМЕЩЕННЫХ ПУРИНОВЫХ НУКЛЕОЗИДОВ

https://doi.org/10.29235/1561-8331-2018-54-3-305-313

Анатацыя

Осуществлен синтез новых производных пуриновых нуклеозидов, содержащих в 6-положении гетерооснования остатки N,N-диэтилэтилендиамина или N-(2-аминоэтил)пирролидина. Разработанные условия проведения реакции аминирования ряда 6-Cl-производных О-ацетилированных пуриновых нуклеозидов и сопутствующих реакций дезацилирования ОН-групп углеводного фрагмента под действием N-этилдиизопропиламина или N-(2-аминоэтил)пирролидина позволили получить деблокированные 6-N-замещенные нуклеозиды в одну стадию с хорошими выходами.

Аб аўтарах

Т. Кулак
Институт биоорганической химии Национальной академии наук Беларуси
Беларусь


Д. Янковская
Институт биоорганической химии Национальной академии наук Беларуси
Беларусь


А. Коноплич
Институт биоорганической химии Национальной академии наук Беларуси
Беларусь


Т. Буравская
Институт биоорганической химии Национальной академии наук Беларуси, НПЦ «ХимФармСинтез»
Беларусь


Е. Калиниченко
Институт биоорганической химии Национальной академии наук Беларуси
Беларусь


Спіс літаратуры

1. Drenichev, M. S. Cytokinin nucleosides – natural compounds with a unique spectrum biological activities / M.S. Drenichev, V.E. Oslovsky, S.N. Mikhailov // Curr. Top. Med. Chem. – 2016. – Vol. 16, №23. – P. 2562-2576. https://doi. org/10.2174/1568026616666160414123717

2. Rosemeyer, H. The chemodiversity of purine as a constituent of natural products / H. Rosemeyer // Chem. Biodivers. – 2004. – Vol. 1, №3. – P. 361–401. https://doi.org/10.1002/cbdv.200490033

3. Романов, Г.А. Как цитокинины действуют на клетку / Г.А. Романов // Физиология растений. – 2009. – Т. 56, №2. – С. 295–319.

4. Preparation, biological activity and endogenous occurrence of N6-benzyladenosines / K. Doležal [et al.] // Bioorg. Med. Chem. – 2007. – Vol. 15, №11. – P. 3737–3747. https://doi.org/10.1016/j.bmc.2007.03.038

5. The discovery and synthesis of highly potent, A2a receptor agonists / S.E. Keeling [et al.] // Bioorg. Med. Chem. Lett. – 2000. – Vol. 10, №4. – P. 403–406. https://doi.org/10.1016/s0960-894x(00)00017-2

6. N6-Cycloalkyl-2-substituted adenosine derivatives as selective, high affinity adenosine A1 receptor agonists / Е. Elzein [et al.] // Bioorg. Med. Chem. Lett. – 2007. – Vol. 17, №1. – Р. 161–166. https://doi.org/10.1016/j.bmcl.2006.09.065

7. 5-C-Ethyltetrazolyl-N6-substituted adenosine and 2-chloroadenosine derivatives as highly potent dual acting A1 adenosine receptor agonists and A3 adenosine receptor antagonists / R. Petrelli [et al.] // J. Med. Chem. – 2015. – Vol. 58, №5. – P. 2560–2566. https://doi.org/10.1021/acs.jmedchem.5b00074

8. Chemical modification of the plant isoprenoid cytokinin N6-isopentenyladenosine yields a selective inhibitor of human enterovirus EV 71 replication / V.I. Tararov [et al.] // Eur. J. Med. Chem. – 2015. – Vol. 90. – P. 406–413. https://doi. org/10.1016/j.ejmech.2014.11.048

9. Anticancer activity of natural cytokinins: a structure-activity relationship study / J. Voller [et al.] // Phytochemistry. – 2010. – Vol. 71, №11–12. – P. 1350–1359. https://doi.org/10.1016/j.phytochem.2010.04.018

10. Anti-malarial activity of N6-modified purine analogues / K. Too [et al.] // Bioorg. Med. Chem. – 2007. – Vol. 15, №16. – P. 5551–5562. https://doi.org/10.1016/j.bmc.2007.05.038

11. Synthesis, biological evaluation and molecular modeling studies of N6-benzyladenosine analogues as potential anti-toxoplasma agents / Y.A. Kim [et al.] // Biochem. Pharmacol. – 2007. – Vol. 73, №10. – P. 1558–1572. https://doi. org/10.1016/j.bcp.2007.01.026

12. Adenosine analogues as inhibitors of Trypanosoma brucei phosphoglycerate kinase: elucidation of a novel binding mode for a 2-amino-N6-substituted adenosine / J.C. Bressi [et al.] // J. Med. Chem. – 2000. – Vol. 43, №22. – P. 4135–4150. https://doi.org/10.1021/jm000287a

13. Fleysher, M.H. N6-Substituted adenosines: synthesis, biological activity, and some structure-activity relationships / M.H. Fleysher // J. Med. Chem. – 1972. – Vol. 15, №2. – P. 187–191. https://doi.org/10.1021/jm00272a015

14. 6-N-Alkyladenosines: synthesis and evaluation of in vitro anticancer activity / R. Ottria [et al.] // Bioorg. Med. Chem. – 2010. – Vol. 18, №23. – P. 8396–8402. https://doi.org/10.1016/j.bmc.2010.09.030

15. Synthesis of novel 6-(4-substituted piperazine-1-yl)-9-(β-D-ribofuranosyl) purine derivatives, which lead to senescence-induced cell death in liver cancer cells / M. Tuncbilek [et al.] // J. Med. Chem. – 2012. – Vol. 55, №7. – P. 3058–3065. https://doi.org/10.1021/jm3001532

16. Bredereck, H. Über methylierte Nucleoside und Purine und ihre pharmakologischen Wirkungen, I. Mitteil.: Methylierung von Nucleosiden durch Diazomethan / H. Bredereck, A. Martini // Chem. Ber. – 1947. – Vol. 80, №5. – P. 401– 405. https://doi.org/10.1002/cber.19470800505

17. Ikehara, M. Studies of nucleosides and nucleotides. XXVI. Further studies on the chlorination of inosine derivatives with dimethylformamide – thionyl chloride complex / M. Ikehara, H. Uno // Chem. Pharm. Bull. – 1965. – Vol. 13, №2. – P. 221–223. https://doi.org/10.1248/cpb.13.221

18. Robins, M. J. Nucleic acid related compounds. 33. Conversions of adenosine and guanosine to 2,6-dichloro, 2-amino6-chloro, and derived purine nucleosides / M.J. Robins, B. Uznanski // Can. J. Chem. – 1981. – Vol. 59, №. 17. – P. 2601–2607. https://doi.org/10.1139/v81-374

19. Alternative and improved synthesis of highly potent and selective A3 adenosine receptor agonists, Cl-IB-MECA and Thio-Cl-IB-MECA / X. Hou [et al.] // Arch. Pharm. Res. – 2007. – Vol. 30, №10. – P. 1205–1209. https://doi.org/10.1007/ bf02980260

20. Dekker, C.A. Separation of nucleoside mixtures on Dowex-1 (OH– ) / C.A. Dekker // J. Amer. Chem. Soc. – 1965. – Vol. 87, №17. – P. 4027–4029. https://doi.org/10.1021/ja01095a073

21. Schaffer, H. J. Synthesis of potential anticancer agents. XIV. Ribosides of 2,6-disubstituted purines / H.J. Schaffer, H.J. Thomas // J. Amer. Chem. Soc. – 1958. – Vol. 80, №14. – P. 3738–3742. https://doi.org/10.1021/ja01547a068

22. Fiorini, M.T. Solution-phase synthesis of 2,6,9-trisubstituted purines / M.T. Fiorini, C. Abell // Tetrahedron Lett. – 1998. – Vol. 39, №13. – P. 1827–1830. https://doi.org/10.1016/s0040-4039(98)00098-7

23. Synthesis and biological activity of new potential agonists for the human adenosine A2A receptor / M.P. Bosch [et al.] // J. Med. Chem. – 2004. – Vol. 47, №. 16. – P. 4041–4053. https://doi.org/10.1021/jm031143+

24. Mason, S.F. Purine studies. Part II. The ultra-violet absorption spectra of some mono- and poly-substituted purines / S.F. Mason // J. Chem. Soc. – 1954. – P. 2071–2081. https://doi.org/10.1039/jr9540002071

25. Synthesis of sugar-modified 2,6-diaminopurine and guanine nucleosides from guanosine via transformation of 2-aminoadenosine and enzymatic deamination with adenosine deaminase / M.J. Robins [et al.] // Can. J. Chem. – 1997. – Vol. 75, №6. – P. 762–767. https://doi.org/10.1139/v97-092


##reviewer.review.form##

Праглядаў: 640


Creative Commons License
Кантэнт даступны пад ліцэнзіяй Creative Commons Attribution 3.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)