1. Drenichev, M. S. Cytokinin nucleosides - natural compounds with a unique spectrum biological activities / M.S. Drenichev, V.E. Oslovsky, S.N. Mikhailov // Curr. Top. Med. Chem. - 2016. - Vol. 16, №23. - P. 2562-2576. https://doi. org/10.2174/1568026616666160414123717
2. Rosemeyer, H. The chemodiversity of purine as a constituent of natural products / H. Rosemeyer // Chem. Biodivers. - 2004. - Vol. 1, №3. - P. 361-401. https://doi.org/10.1002/cbdv.200490033
3. Романов, Г.А. Как цитокинины действуют на клетку / Г.А. Романов // Физиология растений. - 2009. - Т. 56, №2. - С. 295-319.
4. Preparation, biological activity and endogenous occurrence of N6-benzyladenosines / K. Doležal [et al.] // Bioorg. Med. Chem. - 2007. - Vol. 15, №11. - P. 3737-3747. https://doi.org/10.1016/j.bmc.2007.03.038
5. The discovery and synthesis of highly potent, A2a receptor agonists / S.E. Keeling [et al.] // Bioorg. Med. Chem. Lett. - 2000. - Vol. 10, №4. - P. 403-406. https://doi.org/10.1016/s0960-894x(00)00017-2
6. N6-Cycloalkyl-2-substituted adenosine derivatives as selective, high affinity adenosine A1 receptor agonists / Е. Elzein [et al.] // Bioorg. Med. Chem. Lett. - 2007. - Vol. 17, №1. - Р. 161-166. https://doi.org/10.1016/j.bmcl.2006.09.065
7. 5-C-Ethyltetrazolyl-N6-substituted adenosine and 2-chloroadenosine derivatives as highly potent dual acting A1 adenosine receptor agonists and A3 adenosine receptor antagonists / R. Petrelli [et al.] // J. Med. Chem. - 2015. - Vol. 58, №5. - P. 2560-2566. https://doi.org/10.1021/acs.jmedchem.5b00074
8. Chemical modification of the plant isoprenoid cytokinin N6-isopentenyladenosine yields a selective inhibitor of human enterovirus EV 71 replication / V.I. Tararov [et al.] // Eur. J. Med. Chem. - 2015. - Vol. 90. - P. 406-413. https://doi. org/10.1016/j.ejmech.2014.11.048
9. Anticancer activity of natural cytokinins: a structure-activity relationship study / J. Voller [et al.] // Phytochemistry. - 2010. - Vol. 71, №11-12. - P. 1350-1359. https://doi.org/10.1016/j.phytochem.2010.04.018
10. Anti-malarial activity of N6-modified purine analogues / K. Too [et al.] // Bioorg. Med. Chem. - 2007. - Vol. 15, №16. - P. 5551-5562. https://doi.org/10.1016/j.bmc.2007.05.038
11. Synthesis, biological evaluation and molecular modeling studies of N6-benzyladenosine analogues as potential anti-toxoplasma agents / Y.A. Kim [et al.] // Biochem. Pharmacol. - 2007. - Vol. 73, №10. - P. 1558-1572. https://doi. org/10.1016/j.bcp.2007.01.026
12. Adenosine analogues as inhibitors of Trypanosoma brucei phosphoglycerate kinase: elucidation of a novel binding mode for a 2-amino-N6-substituted adenosine / J.C. Bressi [et al.] // J. Med. Chem. - 2000. - Vol. 43, №22. - P. 4135-4150. https://doi.org/10.1021/jm000287a
13. Fleysher, M.H. N6-Substituted adenosines: synthesis, biological activity, and some structure-activity relationships / M.H. Fleysher // J. Med. Chem. - 1972. - Vol. 15, №2. - P. 187-191. https://doi.org/10.1021/jm00272a015
14. 6-N-Alkyladenosines: synthesis and evaluation of in vitro anticancer activity / R. Ottria [et al.] // Bioorg. Med. Chem. - 2010. - Vol. 18, №23. - P. 8396-8402. https://doi.org/10.1016/j.bmc.2010.09.030
15. Synthesis of novel 6-(4-substituted piperazine-1-yl)-9-(β-D-ribofuranosyl) purine derivatives, which lead to senescence-induced cell death in liver cancer cells / M. Tuncbilek [et al.] // J. Med. Chem. - 2012. - Vol. 55, №7. - P. 3058-3065. https://doi.org/10.1021/jm3001532
16. Bredereck, H. Über methylierte Nucleoside und Purine und ihre pharmakologischen Wirkungen, I. Mitteil.: Methylierung von Nucleosiden durch Diazomethan / H. Bredereck, A. Martini // Chem. Ber. - 1947. - Vol. 80, №5. - P. 401- 405. https://doi.org/10.1002/cber.19470800505
17. Ikehara, M. Studies of nucleosides and nucleotides. XXVI. Further studies on the chlorination of inosine derivatives with dimethylformamide - thionyl chloride complex / M. Ikehara, H. Uno // Chem. Pharm. Bull. - 1965. - Vol. 13, №2. - P. 221-223. https://doi.org/10.1248/cpb.13.221
18. Robins, M. J. Nucleic acid related compounds. 33. Conversions of adenosine and guanosine to 2,6-dichloro, 2-amino6-chloro, and derived purine nucleosides / M.J. Robins, B. Uznanski // Can. J. Chem. - 1981. - Vol. 59, №. 17. - P. 2601-2607. https://doi.org/10.1139/v81-374
19. Alternative and improved synthesis of highly potent and selective A3 adenosine receptor agonists, Cl-IB-MECA and Thio-Cl-IB-MECA / X. Hou [et al.] // Arch. Pharm. Res. - 2007. - Vol. 30, №10. - P. 1205-1209. https://doi.org/10.1007/ bf02980260
20. Dekker, C.A. Separation of nucleoside mixtures on Dowex-1 (OH- ) / C.A. Dekker // J. Amer. Chem. Soc. - 1965. - Vol. 87, №17. - P. 4027-4029. https://doi.org/10.1021/ja01095a073
21. Schaffer, H. J. Synthesis of potential anticancer agents. XIV. Ribosides of 2,6-disubstituted purines / H.J. Schaffer, H.J. Thomas // J. Amer. Chem. Soc. - 1958. - Vol. 80, №14. - P. 3738-3742. https://doi.org/10.1021/ja01547a068
22. Fiorini, M.T. Solution-phase synthesis of 2,6,9-trisubstituted purines / M.T. Fiorini, C. Abell // Tetrahedron Lett. - 1998. - Vol. 39, №13. - P. 1827-1830. https://doi.org/10.1016/s0040-4039(98)00098-7
23. Synthesis and biological activity of new potential agonists for the human adenosine A2A receptor / M.P. Bosch [et al.] // J. Med. Chem. - 2004. - Vol. 47, №. 16. - P. 4041-4053. https://doi.org/10.1021/jm031143+
24. Mason, S.F. Purine studies. Part II. The ultra-violet absorption spectra of some mono- and poly-substituted purines / S.F. Mason // J. Chem. Soc. - 1954. - P. 2071-2081. https://doi.org/10.1039/jr9540002071
25. Synthesis of sugar-modified 2,6-diaminopurine and guanine nucleosides from guanosine via transformation of 2-aminoadenosine and enzymatic deamination with adenosine deaminase / M.J. Robins [et al.] // Can. J. Chem. - 1997. - Vol. 75, №6. - P. 762-767. https://doi.org/10.1139/v97-092