SYNTHESIS OF NEW 6-N-SUBSTITUTED PURINE NUCLEOSIDES
https://doi.org/10.29235/1561-8331-2018-54-3-305-313
Abstract
New derivatives of purine nucleosides containing the residues of N,N-diethylethylenediamine or N-(2-aminoethyl)pyrrolidine in 6-position of heterobase have been synthesized. The one-step preparation of 6-N-substituted nucleosides was performed in good yields by the amination of 6-Cl-derivatives of O-acetylated purine nucleosides and concomitant deacylation of OH-groups of a carbohydrate moiety with N,N-diethylethylenediamine or N-(2-aminoethyl)pyrrolidine.
About the Authors
T. I. KulakBelarus
Tamara I. Kulak – Ph. D. (Chemistry), Leading Researcher
5/2, Acad. V.F. Kuprevich Str., 220141, Minsk
D. V. Yankovskaya
Belarus
Darya V. Yankovskaya – Engineer-Chemist, Research and Experimental Production “ChemPharmSynthesis”
5/2, Acad. V.F. Kuprevich Str., 220141, Minsk
A. V. Konoplich
Belarus
Alena V. Konoplich – Chemist-Pharmacist, Research and Experimental Production “ChemPharmSynthesis”
5/2, Acad. V.F. Kuprevich Str., 220141, Minsk
T. N. Buravskaya
Belarus
Tatyana N. Buravskaya – Ph. D. (Chemistry), Senior Researcher, Research and Experimental Production “ChemPharmSynthesis”
5/2, Acad. V.F. Kuprevich Str., 220141, Minsk
E. N. Kalinichenko
Belarus
Elena N. Kalinichenko – Corresponding Member, D. Sc. (Chemistry), Deputy Director
5/2, Acad. V.F. Kuprevich Str., 220141, Minsk
References
1. Drenichev M. S., Oslovsky V. E., Mikhailov S. N. Cytokinin nucleosides – natural compounds with a unique spectrum biological activities. Current Topics in Medicinal Chemistry, 2016, vol. 16, no. 23, pp. 2562–2576. https://doi.org/10.2174/156 8026616666160414123717
2. Rosemeyer H. The chemodiversity of purine as a constituent of natural products. Chemistry and Biodiversity, 2004, vol. 1, no. 3, pp. 361–401. https://doi.org/10.1002/cbdv.200490033
3. Romanov G. A. How do cytokinins affect the cell? Russian Journal of Plant Physiology, 2009, vol. 56, no. 2, pp. 268– 290. https://doi.org/10.1134/s1021443709020174
4. Doležal K., Popa I., Hauserová E., Spíchal L., Chakrabarty K., Novák O., Kryštof V., Voller J., Holub J., Strnad M. Preparation, biological activity and endogenous occurrence of N6-benzyladenosines. Bioorganic & Medicinal Chemistry, 2007, vol. 15, no. 11, pp. 3737–3747. https://doi.org/10.1016/j.bmc.2007.03.038
5. Keeling S. E., Albinson F. D., Ayres B. E., Butchers P. R., Chambers C. L., Cherry P. C., Ellis F., Ewan G. B., Gregson M., Knight J., Mills K., Ravenscroft P., Reynolds L. H., Sanjar S., Sheehan M. J. The discovery and synthesis of highly potent, A2a receptor agonists. Bioorganic & Medicinal Chemistry Letters, 2000, vol. 10, no. 4, pp. 403–406. https:// doi.org/10.1016/s0960-894x(00)00017-2
6. Elzein E., Kalla R., Li X., Perry T., Marquart T., Micklatcher M., Li Y., Wu Y., Zeng D., Zablocki J., N6-Cycloalkyl2-substituted adenosine derivatives as selective, high affinity adenosine A1 receptor agonists, Bioorganic & Medicinal Chemistry Letters, 2007, vol. 17, no. 1, pp. 161–166. https://doi.org/10.1016/j.bmcl.2006.09.065
7. Petrelli R., Torquati I., Kachler S., Luongo L., Maione S., Franchetti P., Grifantini M., Novellino E., Laveccia A., Klotz K.-N., Cappellacci L. 5-C-Ethyltetrazolyl- N6-substituted adenosine and 2-chloroadenosine derivatives as highly potent dual acting A1 adenosine receptor agonists and A3 adenosine receptor antagonists. Journal of Medicinal Chemistry, 2015, vol. 58, no. 5, pp. 2560–2566. https://doi.org/10.1021/acs.jmedchem.5b00074
8. Tararov V. I., Tijsma A., Kolyachkina S. V., Oslovsky V. E., Neyts J., Drenichev M. S., Leyssen P., Mikhailov S. N. Chemical modification of the plant isoprenoid cytokinin N6-isopentenyladenosine yields a selective inhibitor of human enterovirus EV 71 replication. European Journal of Medicinal Chemistry, 2015, vol. 90, pp. 406–413. https://doi.org/10.1016/j. ejmech.2014.11.048
9. Voller J., Zatloukal M., Lenobel R., Doležal K., Bereš T., Kryštof V., Spichal L., Niemann P., Džubak P., Hajduch M., Strnad M. Anticancer activity of natural cytokinins: a structure-activity relationship study. Phytochemistry, 2010, vol. 71, no. 11–12, pp. 1350–1359. https://doi.org/10.1016/j.phytochem.2010.04.018
10. Too K., Brown D. M., Bongard E., Yardley V., Vivas L., Loakes D. Anti-malarial activity of N6-modified purine analogues. Bioorganic & Medicinal Chemistry, 2007, vol. 15, no. 16, pp. 5551–5562. https://doi.org/10.1016/j.bmc.2007.05.038
11. Kim Y. A., Sharon A., Chu C. K., Rais R. H., Al Safarialani O. N., Naguib F. N. M., el Kouni M. H. Synthesis, biological evaluation and molecular modeling studies of N6-benzyladenosine analogues as potential anti-toxoplasma agents. Biochemical Pharmacology, 2007, vol. 73, no. 10, pp. 1558–1572. https://doi.org/10.1016/j.bcp.2007.01.026
12. Bressi J. C., Choe J., Hough M. T., Buckner F. S., Van Voorhis W. C., Verlinde C. L. M. J., Hol W. G. J., Gelb M. H. Adenosine analogues as inhibitors of Trypanosoma brucei phosphoglycerate kinase: elucidation of a novel binding mode for a 2-amino-N6-substituted adenosine. Journal of Medicinal Chemistry, 2000, vol. 43, no. 22, pp. 4135–4150. https://doi. org/10.1021/jm000287a
13. Fleysher M. H. N6-Substituted adenosines: synthesis, biological activity, and some structure-activity relationships. Journal of Medicinal Chemistry, 1972, vol. 15, no. 2, pp. 187–191. https://doi.org/10.1021/jm00272a015
14. Ottria R., Casati S., Baldoli E., Maier J. A. M., Ciuffreda P. 6-N-Alkyladenosines: synthesis and evaluation of in vitro anticancer activity. Bioorganic & Medicinal Chemistry, 2010, vol. 18, no. 23, pp. 8396–8402. https://doi.org/10.1016/j. bmc.2010.09.030
15. Tuncbilek M., Guven E. B., Onder T., Atalay R. C. Synthesis of novel 6-(4-substituted piperazine-1-yl)-9-(β-D-ribofuranosyl) purine derivatives, which lead to senescence-induced cell death in liver cancer cells. Journal of Medicinal Chemistry, 2012, vol. 55, no. 7, pp. 3058–3065. https://doi.org/10.1021/jm3001532
16. Bredereck H., Martini A. Über methylierte Nucleoside und Purine und ihre pharmakologischen Wirkungen, I. Mitteil.: Methylierung von Nucleosiden durch Diazomethan. Chemische Berichte, 1947, vol. 80, no. 5, pp. 401–405. https:// doi.org/10.1002/cber.19470800505
17. Ikehara M., Uno H. Studies of nucleosides and nucleotides. XXVI. Further studies on the chlorination of inosine derivatives with dimethylformamide – thionyl chloride complex. Chemical & Pharmaceutical Bulletin, 1965, vol. 13, no. 2, pp. 221–223. https://doi.org/10.1248/cpb.13.221
18. Robins M. J., Uznanski B. Nucleic acid related compounds. 33. Conversions of adenosine and guanosine to 2,6-dichloro, 2-amino-6-chloro, and derived purine nucleosides. Canadian Journal of Chemistry, 1981, vol. 59, no. 17, pp. 2601– 2607. https://doi.org/10.1139/v81-374
19. Hou X., Lee H. W., Tosh D. K., Zhao L. X., Jeong L. S. Alternative and improved synthesis of highly potent and selective A3 adenosine receptor agonists, Cl-IB-MECA and Thio-Cl-IB-MECA. Archives of Pharmacal Research, 2007, vol. 30, no. 10, pp. 1205–1209. https://doi.org/10.1007/bf02980260
20. Dekker C. A. Separation of nucleoside mixtures on Dowex-1 (OH– ). Journal of the American Chemical Society, 1965, vol. 87, no. 17, pp. 4027–4029. https://doi.org/10.1021/ja01095a073
21. Schaffer H. J., Thomas H. J. Synthesis of potential anticancer agents. XIV. Ribosides of 2, 6-disubstituted purines. Journal of the American Chemical Society, 1958, vol. 80, no. 14, pp. 3738–3742. https://doi.org/10.1021/ja01547a068
22. Fiorini M. T., Abell C. Solution-phase synthesis of 2,6,9-trisubstituted purines. Tetrahedron Letters, 1998, vol. 39, no. 13, pp. 1827–1830. https://doi.org/10.1016/s0040-4039(98)00098-7
23. Bosch M. P., Campos F., Niubó I., Rosell G., Díaz J. L., Brea J., Loza M. I., Guerrero A. Synthesis and biological activity of new potential agonists for the human adenosine A2A receptor. Journal of Medicinal Chemistry, 2004, vol. 47, no. 16, pp. 4041–4053. https://doi.org/10.1021/jm031143+
24. Mason S. F. Purine studies. Part II. The ultra-violet absorption spectra of some mono- and poly-substituted purine. Journal of the Chemical Society, 1954, pp. 2071–2081. https://doi.org/10.1039/jr9540002071
25. Robins M. J., Zou R., Hansske F., Wnuk S. F. Synthesis of sugar-modified 2,6-diaminopurine and guanine nucleosides from guanosine via transformation of 2-aminoadenosine and enzymatic deamination with adenosine deaminase. Canadian Journal of Chemistry, 1997, vol. 75, no. 6, pp. 762–767. https://doi.org/10.1139/v97-092