Interaction of titanium oxide with sodium hydroxide at hydrothermal conditions
https://doi.org/10.29235/1561-8331-2020-56-2-150-157
Abstract
Sodium titanates were obtained by hydrothermal treatment using titanium tetrabutoxide (ТBT), titanium tetroisopropoxide (TIPT), hydrated titanium dioxide (prepared by hydrolysis of titanium alkoxide) or air-dried TiO2 sol with a molar ratio of TBT/TIPT/TiO2: NaOH equal to 1:10–80, at the temperature 130–180 °C and treatment time 24–72 h. Samples were characterized by the adsorption method, X-ray phase analysis, scanning electron microscopy. The photocatalytic properties of nanostructured titanate in the H-form in the process of Rhodamine FL–BM photodegradation under UV-irradiation (K = 0.03–0.05 min–1), as well as the electrorheological properties, were evaluated. Partially hydrated sodium titanates as a filler of the electrorheological dispersion (the filler content of dispersion was 5 %) exhibited the shear stress of 50–60 Pa and the leakage current density of 1.0–1.5 μA/cm2 at an electric field strength of E = 4 kV/cm at a shear rate of 17.1 s–1.
Keywords
About the Author
A. N. MurashkevichBelarus
Anna N. Murashkevich – D. Sc. (Engineering), Professor
13a , Sverdlov Str., 220006, Minsk
References
1. Yin J., Zhao X. Electrorhelogical properties of titanate nanotube suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, vol. 329, pp. 153–160. https://doi.org/10.1016/j.colsurfa.2008.07.006
2. Yin J., Zhao X. Electrorhelogy of nanofiber suspensions. Naoscale Research Letters, 2011, vol. 6, pp 256–273. https://doi:10.1186/1556-276X-6-256
3. Wang Z., Song X., Wang B., Tian X., Hao Ch., Chen K. Bionic cactus-like titanium oxide microspheres and its smart electrorhelogical activity. Chemical Engineering Journal, 2014, vol. 256. pp. 268–279. https://doi.org/10.1016/j.cej.2014.06.115
4. Xiang L., Zhao X. Wet-Chemical Preparation of TiO2-Based Composites with Different Morphologies and Photocatalytic Properties. Nanomaterials, 2007, vol. 7. pp. 310–328. https://doi:10.3390/nano7100310
5. Sedlacik M., Mrlik M., Kozakova Z., Pavlinek V., Kuritka I. Synthesis and electrorhelogy of rod-like titanium oxide particles prepared via microwave-assisted molten-salt method. Colloid and Polymer Science, 2013, vol. 291, pp. 1105–1111. https://doi:10.1007/s00396-012-2834-4
6. Shang Yan-Li, Jia Yun-Ling, Liao Fu-Hui, Li Jun-Ran, Li Ming-Xiu, Wang Juan, Zhang Shao-Hua. Preparation, microstructure and electrorhelogical property of nano-sized TiO2 particle materials doped with metal oxides. Journal of Materials Science, 2007, vol. 42, pp. 2586–2590. https://doi.org/10.1007/s10853-006-1336-5
7. Yin J., Zhao X. Temperature effect of rare earth-doped TiO2 electrorhelogical fluids. Journal of Physics D: Applied Physics, 2001, vol. 34, pp. 2063–2067. https://doi.org/10.1088/0022-3727/34/13/317
8. Wu Q., Zhao B.Y., Fang Ch., Hu Ke Ao. An encanced polarization mechanism for the metal cations modified amorphous TiO2 based electrorhelogical materials. The European Physical Journal E, 2005, vol. 17, pp. 63–67. https://doi.org./10.1140/epje/i2004-10108-y
9. Cheng Y., Guo J., Liu X., Xu G., Cui P. Preparation and electrorhelogical effect of acetamide-modified titanate nanotube suspensions instructions. Electro-Rheological Fluids and Magneto-Rheological Suspensions, 2011, pp. 390–396. https://doi.org/10.1142/9789814340236-0054
10. Stenina I. A., Kozina L. D., Kulova T. L., Skundin A. M., Chekannikov A. A., and Yaroslavtsev A. B. Synthesis and Ionic Conduction of Sodium Titanate Na2Ti3O7. Russian Journal of Inorganic Chemistry, 2016, vol. 61, no. 10, pp. 1235–1240. https://doi.org/10.1134/s003602361610020x
11. Sauvet A-L., Baliteau S., Lopes C., Fabry P. Synthesis and characterization of sodium titanates Na2Ti3O7 and Na2Ti6O13. Journal of Solid State Chemistry, 2004, vol. 177, pp. 4508–4515. https://doi.org/10.1016/j.jssc.2004.09.008
12. Hinojosa-Reyes M, Camposeco-Solís R., Ruiz F., Martínez N N., González V. R., and Compeán-Jasso M. E. H2Ti3O7 Nanotubes Decorated with Silver Nanoparticles for Photocatalytic Degradation of Atenolol. Journal of Nanomaterials, 2017, vol. 2017. https://doi.org/10.1155/2017/9610419
13. Murashkevich A. N., Alisienok O. A., Zharskii I. M. Physicochemical and Photocatalytic Properties of Nanosized Titanium Dioxide Deposited on Silicon Dioxide Microspheres. Kinetics and Catalysis, 2011, vol. 52, no. 6, pp. 809–816. https://doi.org/10.1134/s0023158411060140
14. Qamar, M. Photodegradation of acridine orange catalyzed by nanostructured titanium dioxide modified with platinum and silver metals. Desalination, 2010, vol. 254, pp. 108–113. https://doi.org/10.1016/j.desal.2009.12.006
15. Stengl V., Bakardjieva S., Murafa N. Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Materials Chemistry and Physics., 2009, vol. 114. pp. 217–226. doi:10.1016/j.matchemphys.2008.09.025
16. Zhao B., Lin L., He D. Phase and morphological transitions of titania/titanate nanostructures from an acid to an alkali hydrothermal environment. Journal of Materials Chemistry A, 2013, vol. 1, pp. 1659–1668. https://doi.org/10.1039/c2ta00755j
17. Zhang M., Jin Zh., Zhang J., Guo X., Yang J., Li W., Wang X., Zhang Zh. Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. Journal of Molecular Catalysis A, 2004, vol. 217, pp. 203–210. doi:10.1016/j.molcata.2004.03.032
18. Murashkevich A.N., Alisienok O.A., Zharskii I.M., Korobko E.V., Zhuravskii N.A., Novikova Z.A. Physicochemical and electrorheological properties of titanium dioxide modified with metal oxides. Colloid Journal, 2014, vol. 76, pp. 465–470. https://doi.org/10.1134/s1061933x14040115
19. Hendrix, Y., Lazaro Garcia, A., Yu, Q., & Brouwers, H. J. H. Titania-Silica composites: a review on the photocatalytic activity and synthesis methods. Journal of Nano Science and Engineering, 2015, vol. 5, (4), pp. 161–177. https://doi.org/10.4236/wjnse.2015.54018
20. Epling G. A., Lin C. Photoassisted bleaching of dyes utilizing TiO2 and visible light. Chemosphere, 2002, vol. 46, no 4, pp. 561–570. https://doi.org/10.1016/S0045-6535(01)00173-4