Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Enzymatic hydrolysis of plant raw materials: state and prospects

https://doi.org/10.29235/1561-8331-2021-57-4-502-512

Abstract

Plant raw materials are practically an inexhaustible natural resource, since they are constantly renewed in the process of plant photosynthesis, which determines the prospects for their use for industrial processing in various ways, including hydrolytic. The main biopolymer components of plant biomass in terms of their quantitative content are polysaccharides, the hydrolytic processing of which by acidic or enzymatic hydrolysis leads to the formation of monosaccharides and various products obtained from them. This review of scientific literature analyzes theoretical concepts and the current state of research on the development, improvement and prospects for the use of enzymatic hydrolysis of plant raw materials. The efficiency of this process and the composition of the resulting products largely depend on the features of the supramolecular structure of cellulose, the content of hemicelluloses and lignin in the raw material, the balance and activity of the cellulase complex of enzymes. It is shown that the main directions of development and improvement of the processes of enzymatic hydrolysis of plant raw materials at present are the production and use of more effective strains of microorganisms that produce highly active enzymes, the directed creation of complex enzymes (hydrolyzing not only cellulose, but also hemicellulose, as well as destroying lignin), the development of methods for pretreatment of raw materials to increase the reactivity of cellulose and remove lignin and improve the processes of fermentolysis.

About the Author

V. S. Boltovsky
Belarusian State Technological University
Belarus

Valeriy S. Boltovskiy – D. Sc. (Engineering), Professor

13a, Sverdlov str., 220006, Minsk, Republic of Belarus



References

1. Bolotnikova O. I., Mikhailova N. P., Ginak A. I. Acid and enzymatic hydrolysis of nonfood-based biomass sources: prospects for industrial implementation. Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta) = Bulletin of the Saint Petersburg State Institute of Technology (Technical University), 2017, no. 39, pp. 89–95 (in Russian). https://doi.org/10.15217/issn1998984-9.2017.88

2. Fengel D., Wegener G. Wood (chemistry, ultrastructure, reactions). Moscow, Lesnaya promyshlennost' Publ., 1988. 512 p. (in Russian).

3. Lobanok, A. G., Babitskaya V. G., Bogdanovskaya Zh. N. Microbial synthesis based on cellulose: protein and other valuable products. Minsk, Nauka i tekhnika Publ., 1988. 261 p. (in Russian).

4. Cheng H., Wang L. Lygnocellulose steed stock biorefinery as petrorefinery substitules. Biomass Now - Sustainable Growth and Use, 2013, pp. 347–388. https://doi.org/10.5772/51491

5. Klesov, A. A., Grigorash S.Yu. Kinetic theory of action of polyenzyme cellulase systems: stationary kinetics. Microbiology and biochemistry of decomposition of plant materials. Moscow, Nauka Publ., 1988, pp. 109–146 (in Russian).

6. Rabinovich M. L., Melnik M. S., Bolobova A. V. Cellulases of microorganisms. Applied Biochemistry and Microbiology, 2002, vol. 38, no. 4, pp. 305–322. https://doi.org/10.1023/a:1016264219885

7. Chekushina A. V., Dotsenko G. S., Kondratieva E. G., Sinitsyn A. P. Enzyme preparations fromPenicillium verruculosum for bioconversion of plant raw materials is an alternative to commercial preparations obtained using Trichoderma fungi species. Biotekhnologiya = Biotechnology, 2013, no. 3, pp. 69–80 (in Russian).

8. Chekushina A. V. Cellulolytic enzyme preparations based on the fungi Trichoderma, Penicillium and Myceliophora with increased hydrolytic activity. Moscow, 2013. 23 p. (in Russian).

9. Dotsenko A. S., Gusakov A. V., Rozhkova A. M., Volkov P. V., Korotkova O. G., Sinitsyn A. P. Enzymatic hydrolysis of cellulose using mixes of mutant forms of cellulases from Penicillium verruculosum. Moscow University Chemistry Bulletin, 2018, vol. 73, no. 2, pp. 58-62. https://doi.org/10.3103/s0027131418020037

10. Reese E. T. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. Journal of Bacteriology, 1950, vol. 59, no. 4, pp. 485–497. https://doi.org/10.1128/jb.59.4.485-497.1950

11. Reese E. T., Loewus F., Runeckies V. S. Degradation of polymeric carbohydrates of microbial enzymes. The structure, biosynthesis and degradation of wood. 1977, vol. 11, pp. 311–367. https://doi.org/10.1007/978-1-4615-8873-3_8

12. Eriksson K. E., Petersson B. Exstracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. Purification and physicochemical characterization of an exo-1,4-glucanase. European Journal of Biochemistry, 1975, vol. 51, no. 1, pp. 213–218. https://doi.org/10.1111/j.1432-1033.1975.tb03921.x

13. Yalliwell G., Griffin M. The nature and mode of action of the cellulolytic components C1 of Trichoderma koningii on native cellulose. Biochemical Journal, 1973, vol. 135, no. 4, pp. 587–594. https://doi.org/10.1042/bj1350587

14. Wood, T. M., McGrae S. J. The purification and properties of the C1-component of Trichoderma koningii cellulose. Biochemical Journal, 1972, vol. 128, no. 7, pp. 1183–1192. https://doi.org/10.1042/bj1281183

15. Wood, T. M. Enzymes and mechanism involved in the solubilization of native cellulose. Ciencia biologica, 1980, vol. 5, pp. 27–33.

16. Wood, T. M., McGrae S. J., MacFariane C. C. The isolation purification and properties of Penicillium fungiculosum cellulose. Biochemical Journal, 1980, vol. 189, no. 1, pp. 51–65. https://doi.org/10.1042/bj1890051

17. Klesov A. A., Rabinovich M. L. Enzymatic hydrolysis of cellulose. Bioorganicheskaya khimiya = Russian journal of bioorganic chemistry, 1980, vol. 6, no. 8, pp. 1225–1242 (in Russian).

18. Klesov A. A., Grigorash S. Yu. Enzymatic hydrolysis of cellulose. III. Regularities of the formation of glucose and cellobiose under the action of polyenzyme systems on insoluble (natural) cellulose. Bioorganicheskaya khimiya = Russian journal of bioorganic chemistry, 1981, vol. 7, no. 10, pp. 1538–1552 (in Russian).

19. Klesov A. A., Grigorash S. Yu. Kinetic theory of action of polyenzyme cellulase systems: non-stationary kinetics. Microbiology and biochemistry of decomposition of plant materials. Moscow, Nauka Publ., 1988, pp. 147–180 (in Russian).

20. Makarova E. I., Budaeva V. V. Bioconversion of nonfood cellulosic biomass. Part 2. Izvestiya vuzov. Prikladnaya khimiya i biotehnologiya = Proceedings of universities. Applied chemistry and biotechnology, 2016, vol. 6, no. 3, pp. 26–35 (in Russian). https://doi.org/10.21285/2227-2925-2016-6-3-26-35

21. Rabinovich M. L. The mechanism of enzymatic hydrolysis of cellulose: the role of adsorption of enzymes. Microbiology and biochemistry of decomposition of plant materials. Moscow, Nauka Publ., 1988, pp. 70–180 (in Russian).

22. Budaeva V. V., Makarova E. I., Skiba E. A., Sakovich G. V. Enzymatic hydrolysis of the products of hydrothermobaric treatment of miscanthus and oat fruit shells. Catalysis in industry, 2013, vol. 5, no. 4, pp. 335-341. https://doi.org/10.1134/s207005041304003x

23. Morteza S., Kamyar M. Modeling the process of enzymatic hydrolysis of cellulosic waste materials to fermentable sugars in solid-liquid systsems. 18 International Congress of Chemical and Process Engineering. Prague, 24–28 Aug. 2008, pp. 2114–2115.

24. Jeoh T., Santa-Maria M. C., O'Dell P. J. Assessing cellulose microfibrillar structure changes due to cellulase action. Carbohydrate Polymers, 2013, vol. 97, no. 2, pp. 581–586. https://doi.org/10.1016/j.carbpol.2013.05.027

25. Zorov I. N., Bushina E. V., Proskurina O. V., Osipov D. O., Volkov P. V., Chekushina A. V., Rozhkova A. M., Sinitsyn A. P. Analysis of the products of enzymatic hydrolysis of plant biomass. Fizikokhimiya rastitel’nyih polimerov: Materialyi 5 Mezhdunarodnoy konferentsii, Arkhangel'sk, 8–11 iyulya, 2013 [Physicochemistry of Plant Polymers: Proceedings of the 5th International Conference, Arkhangelsk, 8–11 Jul., 2013]. Arkhangelsk, 2013, pp. 71–73 (in Russian).

26. Zhang M., Su R., Qi W., Du R., He Z. Enzymatic hydrolysis of cellulose with different crystallinities studied by means of SEG-MALLS. Chinese Journal of Chemical Engineering, 2011, vol. 19, no. 5, pp. 773–778. https://doi.org/10.1016/s1004-9541(11)60055-4

27. Sinitsyn A.P. Influence of physicochemical and structural factors of cellulose on the efficiency of its enzymatic hydrolysis. Microbiology and biochemistry of decomposition of plant materials. Moscow, Nauka Publ., 1988, pp. 3–29 (in Russian).

28. Ioelovich M. Ya. Study of the kinetics of enzymatic hydrolysis of cellulose materials. Khimiya rastitel’nogo syr’ya = Chemistry of plant raw material, 2014, no. 1, pp. 61–64 (in Russian). https://doi.org/10.14258/jcprm.1401061

29. Abdullah R., Saka S. Hydrolysis behavior of various crystalline celluloses treated by cellulase of Tricoderma viride. Cellulose, 2014, vol. 21, no. 6, 4049–4058. https://doi.org/10.1007/s10570-014-0410-4

30. Wahlström R. M., Suurnäkki A. Enzymatic hydrolysis of lignocellulosic polysaccharides in the presence of ionic liquids. Green Chemistry, 2015, vol. 17, no. 2, pp. 694–714. https://doi.org/10.1039/c4gc01649a

31. Gusakov A. V., Sinitsyn A. P. Structural features and physicochemical parameters of lignocellulosic materials that determine their reactivity during enzymatic degradation. Fizikokhimiya rastitel’nyih polimerov: Materialyi 5 Mezhdunarodnoy konferentsii, Arkhangel'sk, 8–11 iyulya, 2013 [Physicochemistry of Plant Polymers: Proceedings of the 5th International Conference, Arkhangelsk, 8–11 Jul., 2013]. Arkhangelsk, 2013, pp. 56–57 (in Russian).

32. Kalunyants K. A., Shanenko E. F., Zaitsev L. V. Modern methods of enzymatic hydrolysis of cellulose-containing materials. Itogi nauki i tekhniki. Ser. Khimiya i tekhnologiya pischevykh produktov [Results of Science and Technology. Ser. Chemistry and technology of food products], 1981, vol. 1, pp. 185 (in Russian).

33. Sinitsyn A. P., Leonova I. L., Nadzhemin B. Comparative analysis of the reactivity of cellulose-containing raw materials in relation to enzymatic hydrolysis. Prikladnaya biokhimiya i mikrobiologiya = Applied Biochemistry and Microbiology, 1986, vol. 22, no. 4, pp. 517–525 (in Russian).

34. Sushkova V. I., Ustyuzhaninova L. V., Berezina O. V., Yarotskiy S. V. Methods of preparation of plant raw materials for bioconversion into feed products and bioethanol. Khimiya rastitel’nogo syr’ya = Chemistry of plant raw material, 2016, no. 1, pp. 93–119 (in Russian). https://doi.org/10.14258/jcprm.201601841

35. Subhedar P. B., Gogate P. R. Intensification of enzymatic hydrolysis of lignocellulose using ultrasound for efficient bioethanol production: a review (Review). Industrial & Engineering Chemistry Research, 2013, vol. 52, no. 34, pp. 11816–11828. https://doi.org/10.1021/ie401286z

36. Ho C. C., Hwan U. B., Soo K. Y., Keun O. K. Improved enzyme efficiency of rapeseed straw through the two-stage fractionation process using sodium hydroxide and sulfuric acid. Applied Energy, 2013, vol. 102, pp. 640–646. https://doi.org/10.1016/j.apenergy.2012.08.011

37. Germano S., Anikó V., André F., Milagres A. M. F. Enhancement of cellulose hydrolysis in sugarcane bagasse by the selective removal of lignin with sodium chlorite. Applied Energy, 2013, vol. 102, pp. 399–402. https://doi.org/10.1016/j.apenergy.2012.07.029

38. Sultanova L. M., Likhanova S. S., Petukhova N. I., Sharaeva A. A., Zorin V. V. Research of influence of substrate pretreatment by glycerol on the hydrolysis and digestion of lignocellulosic waste by Streptomyces sp. K-7. Bashkirskii khimicheskii zhurnal = Bashkir chemical journal, 2012, vol. 19, no. 3, pp. 127–129 (in Russian).

39. Makarova E. I., Budaeva V. V., Skiba E. A. Enzymatic hydrolysis of celluloses from oat hulls at different substrate concentrations. Khimiya rastitel’nogo syr’ya = Chemistry of plant raw material, 2013, no. 2, pp. 43–50 (in Russian). https://doi.org/10.14258/jcprm.1302043

40. Buzała K., Przybysz P., Rosicka-Kaczmarek J., Kalinowska H. Production of glucose-rich enzymatic hydrolysates from cellulosic pulps. Cellulose, 2015, vol. 22, no. 1, pp. 663–674. https://doi.org/10.1007/s10570-014-0522-x

41. Deepa D., Rishi G., Preeti N., Chander R. K. Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohydrate Polymers, 2014, vol. 99, pp. 264–269. https://doi.org/10.1016/j.carbpol.2013.08.045

42. Zhaobing S., Chaonan J., Haisheng P., Jiping S., Li L., Junshe S. Pretreatment of corn stover with acidic electrolyzed water and FeCl3 leads to enhanced enzymatic hydrolysis. Cellulose, 2014, vol. 21, no. 5, pp. 3383–3394. https://doi.org/10.1007/s10570-014-0353-9

43. Izyan A. N. Wan, Jamaliah J. Md, Amir R., Munir M. A. Abdul, Diba B. F. Abu, Rosli I. Md. Efficient removal of lignin with the maintenance of hemicellulose from kenaf by two-stage pretreatment process. Carbohydrate Polymers, 2014, vol. 99, pp. 447–453. https://doi.org/10.1016/j.carbpol.2013.08.043

44. Bychkov A. L., Lomovskiy O. I. Method for enzymatic saccharification of lignocellulosic materials. Patent RU no. 2514408. 2014 (in Russian).

45. Chen L., Fu S. Enhanced cellulase hydrosysis of eucalyptus waste fibers from pulp mill by tween80-assisted ferric chloride pretreatment. Journal of Agricultural and Food Chemistry, 2013, vol. 61, no. 13, pp. 3293–3300. https://doi.org/10.1021/jf400062e

46. Yeoup C. B., Taek L. J., Hyoung-Woo B., Ung-Jin K., Hyeun-Jong B., Gon W. S., Jae-Young C. Enhanced enzymatic hydrolysis of poplar bark by combined use of gamma ray and dilute acid for bioethanol production. Radiation Physics and Chemistry, 2012, vol. 81, no. 8, pp. 1003–1007. https://doi.org/10.1016/j.radphyschem.2012.01.001

47. Akio K., Shinichiro I., Seung-Hwan L., Takashi E. Quartz crystal microbalance with dissipation monitoring of the enzymatic hydrolysis of steam-treated lignocellulosic nanofibrils. Cellulose, 2014, vol. 21, no. 4, pp. 2433–2444. https://doi.org/10.1007/s10570-014-0312-5

48. Budaeva V. V., Mitrofanov R. Yu., Zolotukhin V. N. Study of enzymatic hydrolysis of cereal processing waste. Polzunovskiy vestnik, 2008, no. 3, pp. 322–327 (in Russian).

49. Golyazimova O. V., Politov A. A., Lomovskiy O. I. Mechanical activation of enzymatic hydrolysis of cellulose. Khimiya rastitel’nogo syr’ya = Chemistry of plant raw material, 2009, no. 2, pp. 59–63 (in Russian).

50. Vazetdinova A. A., Kharina M. V., Loginova I. G., Kleschevnikov L. I. Enzymatic hydrolysis of cellulosic residuals of furfural production from vegetable raw materials. Bashkirskii khimicheskii zhurnal = Bashkir chemical journal, 2017, vol. 24, no. 1, pp. 27–31 (in Russian).

51. De Bari I., Liuzzi F., Villone A., Braccio G. Hydrolysis of concentrated suspensions of steam pretreated Arundo donax. Applied Energy, 2013, vol. 102, pp. 179–189. https://doi.org/10.1016/j.apenergy.2012.05.051

52. Shutova V. V., Yusipovich A. I., Parshina E. Yu., Zakharkin D. O., Revin V. V. Effect of particle size on the enzymatic hydrolysis of polysaccharides from ultrafine lignocellulose particles. Prikladnaya biokhimiya i mikrobiologiya = Applied Biochemistry and Microbiology, 2012, vol. 48, no. 3, pp. 346–352 (in Russian).

53. Golovlev E. L., Golovleva L. A. Solid-phase fermentation of plant raw materials. Microbiology and biochemistry of decomposition of plant materials. Moscow, Nauka Publ., 1988, pp. 301–333 (in Russian).

54. Smirnov K. A., Alashkevich Yu. D., Reshetova N. S. Features of solid phase fermentation. Khimiya rastitel’nogo syr’ya = Chemistry of plant raw material, 2009, no. 3, pp. 161–164 (in Russian).

55. Kalunyants K. A., Golger L. I., Balashov V. E. Equipment for microbiological production. Moscow, Agropromizdat Publ., 1987. 398 p. (in Russian).

56. Lyut P., Ayben U., Kuznetsov Yu. D. Solid phase fermenter and solid phase culture method. Patent RU no. 2235767C2. 2000 (in Russian).

57. Kirsch C., Wermeyer K., Zetzl C., Smirnova I. Enzymatische Hydrolyse von Lignocellolose im Festbettreaktor. Chemie Ingenieur Technik, 2011, vol. 83, no. 6, pp. 867–873. https://doi.org/10.1002/cite.201000204

58. Sakovich G. V., Budaeva V. V., Skiba E. A., Makarova E. I., Pavlov I. N., Kortusov A. N., Zolotukhin V. N. An experience of scaling up the enzymatic hydrolysis of technical celluloses from miscanthus and oat hulls. Polzunovskiy vestnik, 2012, no. 4, pp. 173–177 (in Russian).

59. Pavlechko V. N., Boltovsky V. S. Apparatus for solid-phase fermentation. Patent RB no. 16946. 2013 (in Russian).


Review

Views: 2329


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)