Protective properties of Zr-containing conversion coatings on zinc
https://doi.org/10.29235/1561-8331-2022-58-1-94-104
Abstract
The aim of the study is to develop an environmentally friendly chromium-free passivation technology for galvanized steel. Passivation of zinc coatings was carried out by deposition of conversion coatings from solutions containing ZrO(NO3)2, Na2SiF6 and oxidizer H2O2 or K2S2O8. The effect of the solution pH, the concentration of Na2SiF6 and the type of oxidizer on the protective properties of coatings was studied by the drop method and electrochemical method of linear voltammetry in 3 % NaCl using the full factor experiment 23 . The main effects and effects of the interaction of the studied factors for the darkening time of the droplet and the dissolution potential of zinc are calculated. The solution pH in the presence of the oxidizing agent K2S2O8 influences the both parameters in the most extent. Concentration of Na2SiF6 has a significant effect on the dissolution potential of zinc and the least effect on the darkening time of the droplet. An increase in the solution pH and the concentration of Na2SiF6 increases the protective properties of the coatings. Measurements of the mass loss and open circuit potential during the resource testing of conversion coatings in 3% NaCl showed an increase in the corrosion rate over time.
About the Authors
A. V. TarasevichBelarus
Tarasevich Aleksandr V. – student
13a, Sverlova str., 220006, Minsk
V. G. Matys
Belarus
Matys Vladimir G. – Ph. D. (Chemistry), Associate Professor
13a, Sverlova str., 220006, Minsk
V. V. Poplavskiy
Belarus
Poplavskiy Vasiliy V. – Ph. D. (Physics), Associate Professor
13a, Sverlova str., 220006, Minsk
V. A. Ashuiko
Belarus
Ashuiko Valeriy A. – Ph. D. (Chemistry), Associate Professor
13a, Sverlova str., 220006, Minsk
I. M. Zharskiy
Belarus
Zharskiy Ivan M. – Ph. D. (Chemistry), Professor
13a, Sverlova str., 220006, Minsk
References
1. Matys V. G., Ashuiko V. A., Novikova L. N. Conversion coatings on zinc, prepared from molybdenum-phosphate solutions with additives of transient metal ions. Trudy BGTU. Ser. 2. Khim. tekhnologii, biotekhnologii, geoekologiya = Proceedings of BSTU. Series 2. Chemical Technologies, Biotechnologies and Geoecology, 2019, no. 2, pp. 127–136 (in Russian).
2. Matys V. G., Ivanova N. P., Ashuyko V. A., Novikova L. N. Protection properties of conversion coatings prepared on zinc in the molybdate-phosphate and molybdate-vanadate solutions. Trudy BGTU. Ser. 2. Khim. tekhnologii, biotekhnologii, geoekologiya = Proceedings of BSTU. Series 2. Chemical Technologies, Biotechnologies and Geoecology, 2019, no. 1, pp. 90– 102 (in Russian).
3. Walker D. E., Wilcox G. D. Molybdate based conversion coatings for zinc and zinc alloy surfaces: a review. Transactions of the Institute of Metal Finishing, 2008, vol. 86, no. 5, pp. 251–259. https://doi.org/10.1179/174591908X345022
4. Rout T. K., Bandyopadhyay N. Effect of molybdate coating for white rusting resistance on galvanized steel. Anti-Corrosion Methods and Materials, 2007, vol. 54, no. 1, pp. 16–20. https://doi.org/10.1108/00035590710717348
5. Song Y. K., Mansfeld F. Development of a Molybdate – Phosphate – Silane – Silicate (MPSS) coating process for electrogalvanized steel. Corrosion Science, 2006, vol. 48, no. 1, pp. 154–164. https://doi.org/10.1016/j.corsci.2004.11.028
6. Lewis O. D. [et al.] SVET investigation into use of simple molybdate passivation treatments on electrodeposited zinc coatings. Transactions of the Institute of Metal Finishing, 2006, vol. 84, no. 4, pp. 188–195. https://doi.org/10.1179/174591906X124038
7. Magalhaes A. A. O., Margarit I. C. P., Mattos O. R. Molybdate conversion coatings on zinc surfaces. Journal of Electroanalytical Chemistry, 2004, vol. 572, no 2, pp. 433–440. https://doi.org/10.1016/j.jelechem.2004.07.016
8. Wharton J. A. [et al.] An EXAFS investigation of molybdate-based conversion coatings. Journal of Applied Electrochemistry, 2003, vol. 33, no. 7, pp. 553–561. https:// doi.org/10.1023/A:1024911119051
9. Akulich N. E., Ivanova N., Zharskii I., Jönsson-Niedziółka M. Properties of zinc coatings electrochemically passivated in sodium molybdate. Surface and Interface Analysis, 2018, vol. 50, no. 12–13, pp. 1310–1318. https://doi.org/10.1002/sia.6525
10. Akulich N. E., Zharskii I. M., Ivanova N. P. Corrosion properties and protective capabilities of the conversion coatings based on the sodium molybdate. Sviridovskie chteniya: sb. st. = Sviridov Readings: A Collection of Papers. Minsk, BSU, 2016, issue 12, pp. 32–39 (in Russian).
11. Fachikov L., Ivanova D. Surface treatment of zinc coatings by molybdate solutions. Applied Surface Science, 2012, vol. 258, no 24, pp. 10160–10167. https://doi.org/10.1016/j.apsusc.2012.06.098
12. Lewis O. D. [et al.] Conversion coatings for zinc electrodeposits from modified molybdate solutions. Transactions of the Institute of Metal Finishing, 2010, vol. 88, no. 2, pp. 107–116. https://doi.org/10.1179/174591910X12646062076760
13. Liu D., Yang Z., Wang Z., Zhang C. Synthesis and evaluation of corrosion resistance of molybdate-based conversion coatings on electroplated zinc. Surface and Coatings Technology, 2010, vol. 205, no. 7, pp. 2328–2334. https://doi.org/10.1016/j.surfcoat.2010.09.018
14. Da Silva C. G., Margarit-Mattos I.C.P., Mattos O.R., Perrot H., Tribollet B., Vivier V. The molybdate-zinc conversion process. Corrosion Science, 2009, vol. 51, no. 1, pp. 151–158. https://doi.org/10.1016/j.corsci.2008.10.019
15. Hamlaoui Y., Tifouti L., Pedraza F. Corrosion behaviour of molybdate-phosphate-silicate coatings on galvanized steel. Corrosion Science, 2009, vol. 51, no. 10, pp. 2455–2462. https://doi.org/10.1016/j.corsci.2009.06.037
16. Singh D. D. N., Ghosh R. Molybdenum–phosphorus compounds based passivator to control corrosion of hot dip galvanized coated rebars exposed in simulated concrete pore solution. Surface and Coatings Technology, 2008, vol. 202, no. 19, pp. 4687–4701. https://doi.org/10.1016/j.surfcoat.2008.03.038
17. Veysaga Il’yanes G. T., Matys V. G., Ashuyko V. A., Akulich N. E., Jonsson-Niedziolka M. Protection properties of conversion coatings prepared on zinc in the vanadate passivation solution with addition of Zn2+- and Fe2+-ions. Trudy BGTU. Ser. 2. Khim. tekhnologii, biotekhnologii, geoekologiya = Proceedings of BSTU. Series 2. Chemical Technologies, Biotechnologies and Geoecology, 2018, no. 1, pp. 104–113 (in Russian).
18. Akulich N. E., Zharskii I. M., Ivanova N. P. A study of conversion coatings on vanadium/galvanic zinc. Protection of Metals and Physical Chemistry of Surfaces, 2017, vol. 53, no. 3, pp. 503–510. https://doi.org/10.1134/S2070205117020034
19. Zou Z., Li N., Li D., Liu H., Mu S. A vanadium-based conversion coating as chromate replacement for electrogalvanized steel substrates. Journal of Alloys and Compounds, 2011, vol. 509, no. 2, pp. 503–507. https://doi.org/10.1016/j.jallcom.2010.09.080
20. Zou Z., Li N., Li D. Corrosion protection properties of vanadium films formed on zinc surfaces. Rare Metals, 2011, vol. 30, no. 2, pp. 146–149. https://doi.org/10.1007/s12598-011-0214-8
21. Tang P. T., BechNielsen G., Moller P. Molybdate based passivation of zinc. Transactions of the Institute of Metal Finishing, 1997, vol. 75, no. 4, pp. 144–148. https://doi.org/10.1080/00202967.1997.11871161
22. Thomas S., Birbilis N., Venkatraman M. S., Cole I. S. Self-repairing oxides to protect zinc: Review, discussion and prospects. Corrosion Science, 2013, vol. 69, pp. 11–22. https://doi.org/10.1016/j.corsci.2013.01.011
23. Berger R. [et al.] A comparative study of the corrosion protective properties of chromium and chromium free passivation methods. Surface and Coatings Technology, 2007, vol. 202, no. 2, pp. 391–397. https://doi.org/10.1016/j.surfcoat.2007.06.001
24. Wilson B., Fink N., Grundmeier G. Formation of ultra-thin amorphous conversion films on zinc alloy coatings: Part 2: Nucleation, growth and properties of inorganic-organic ultra-thin hybrid films. Electrochimica Acta., 2006, vol. 51, no. 15, pp. 3066–3075. https://doi.org/10.1016/j.electacta.2005.08.041
25. Le Manchet S., Landoulsi J., Richard C., Verchère D. Study of a chromium-free treatment on Hot-Dip Galvanized steel: Electrochemical behaviour and performance in a saline medium.Surface and Coatings Technology, 2010, vol. 205, no. 2, pp. 475–482. https://doi.org/10.1016/j.surfcoat.2010.07.009
26. Szczygieł B., Winiarski J., Tylus W. Effect of deposition time on morphology, corrosion resistance and mechanical properties of Ti-containing conversion coatings on zinc. Materials Chemistry and Physics, 2011, vol. 129, no. 3, pp. 1126– 1131. https://doi.org/10.1016/j.matchemphys.2011.05.074
27. Winiarski J., Masalski J., Szczygieł B. Corrosion resistance of chromium-free conversion coatings deposited on electrogalvanized steel from potassium hexafluorotitanate(IV) containing bath. Surface and Coatings Technology, 2013, vol. 236, no. 3, pp. 252–261. https://doi.org/10.1016/j.surfcoat.2013.09.056
28. Saarimaa V., Markkula A., Arstila K., Manni J., Juhanoja J. Effect of Hot Dip Galvanized Steel Surface Chemistry and Morphology on Titanium Hexafluoride Pretreatment. Advances in Materials Physics and Chemistry, 2017, vol. 07, no. 2, pp. 28–41. https://doi.org/10.4236/ampc.2017.72004
29. Puomi P., Fagerholm H. M., Rosenholm J. B., Sipilä R. Optimization of commercial zirconic acid based pretreatment on hot-dip galvanized and Galfan coated steel. Surface and Coatings Technology, 1999, vol. 115, no. 1, pp. 79–86. https://doi.org/10.1016/S0257-8972(99)00171-1
30. Fockaert L. I., Taheri P., Abrahami S. T., Boelen B., Terryn H., Mol J.M.C. Zirconium-based conversion film formation on zinc, aluminium and magnesium oxides and their interactions with functionalized molecules. Applied Surface Science, 2017, vol. 423, pp. 817–828. https://doi.org/10.1016/j.apsusc.2017.06.174
31. Knudsen O. O., Forsgren A. Corrosion control through organic coatings. Second Edition. London: CRC Press, 2017. 255 p. https://doi.org/10.1201/9781315153186
32. Lostak T., Timma C., Krebs S., Flock J., Schulz S. Organosilane modified Zr-based conversion layer on Zn–Al alloy coated steel sheets. Surface and Coatings Technology, 2016, vol. 305, pp. 223–230. https://doi.org/10.1016/j.surfcoat.2016.08.030
33. Le Manchet S., Verchère D., Landoulsi J. Effects of organic and inorganic treatment agents on the formation of conversion layer on hot-dip galvanized steel: An X-ray photoelectron spectroscopy study. Thin Solid Films, 2012, vol. 520, no. 6, pp. 2009–2016. https://doi.org/10.1016/j.tsf.2011.09.064
34. Barbucci A., Delucchi M., Cerisola G. Study of chromate-free pretreatments and primers for the protection of galvanised steel sheets. Progress in Organic Coatings, 1998, vol. 33, no. 2, pp. 131–138. https://doi.org/10.1016/S0300-9440(98)00046-0
35. Taheri P., Laha P., Terryn H., Mol J. M. C. An in situ study of zirconium-based conversion treatment on zinc surfaces. Applied Surface Science, 2015, vol. 356, pp. 837–843. https://doi.org/10.1016/j.apsusc.2015.08.205
36. Payami-Golhin A., Amrooni Hossaini M., Eslami-Farsani R., Khorsand H. Phosphate-Free Protective Nanoceramic Coatings for Galvanized Steel Sheet with H2O2 Additive. Advanced Materials Research, 2013, vol. 829, pp. 436–440. https://doi.org/10.4028/www.scientific.net/AMR.829.436
37. Zhu L. Q., Yang F., Huang H. J. Investigation of formation process of the chrome-free passivation film of electrodeposited zinc. Chinese Journal of Aeronautics, 2007, vol. 20, no. 2, pp. 129–133. https://doi.org/10.1016/S1000-9361(07)60019-3
38. Starkbaum Z., Bedrnik L., Schwarz K., Dingwerth B. Treatment solution for producing chrome and cobalt-free black conversion coatings. Patent USA, no. 9005373B2, 2015
39. Donsbach H., Hofmann U., Unger J. Agent for the production of anti-corrosion layers on metal surfaces. Patent USA, no. 8764916B2, 2014.
40. Adler Yu. P., Markova E. V., Granovskiy Yu. V. Planning an experiment while looking for the best conditions. Moscow, Nauka Publ., 1976. 279 p. (in Russian).