Квантово-химическое моделирование доксорубицин-фуллереноловых агентов терапии онкологических заболеваний
https://doi.org/10.29235/1561-8331-2022-58-4-369-378
Анатацыя
С целью терапевтического уничтожения злокачественных новообразований обычно применяют хирургическое вмешательство, химиоили лучевую терапию, а в изотопной медицине вводят в опухоль соответствующие короткоживущие радионуклиды (59Fe, 90Y, 95Zr, 99mTc, 106Ru, 114*In, 147Eu, 148Eu, 155Eu, 170Tm, 177mLu, 188Re, 210Po, 222Rn, 230U, 237Pu, 240Cm, 241Cm, 253Es). Бинарная (или нейтронозахватная) терапия – технология, разработанная для избирательного воздействия на злокачественные новообразования и использующая тропные к опухолям препараты, содержащие нерадиоактивные нуклиды (10B, 113Cd, 157Gd и др.). Триадная терапия – последовательное введение в организм комбинации из двух и более по отдельности неактивных и безвредных компонентов тропных к опухолевым тканям и способных в них селективно накапливаться или вступать друг с другом в химическое взаимодействие и уничтожать опухолевые клетки под действием определенных сенсибилизирующих внешних воздействий. Цель работы – квантово-химическое моделирование электронной структуры и анализ термодинамической устойчивости новых доксорубицин-фуллереноловых агентов терапии злокачественных новообразований. Необходимость предварительных исследований по моделированию такого рода объектов обусловлена чрезвычайно высокой трудоемкостью, стоимостью и сложностью их практического получения.
Аб аўтарах
Е. ДикусарБеларусь
А. Пушкарчук
Беларусь
Т. Безъязычная
Беларусь
Е. Акишина
Беларусь
А. Солдатов
Беларусь
С. Кутень
Беларусь
С. Стёпин
Беларусь
А. Низовцев
Беларусь
С. Килин
Беларусь
В. Кульчицкий
Беларусь
В. Поткин
Беларусь
Спіс літаратуры
1. Mayles, P. Handbook of Radiation Therapy Physics: Theory and Practice / P. Mayles, A. Nahum, J. C. Rosenwald. − Taylon & Francis, 2007. − 1450 p. https://doi.org/10.1201/9780429201493
2. Hosmane, N. S. Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment / N. S. Hosmane, J. A. Maquire, Y. Zhu. – World Scientific Publishing Co. Pte. Ltd., 2012. − 300 p. https://doi.org/10.1142/8056
3. Vorst, A. V. RF/ Microwave interaction with biological tissues / A. V. Vorst, A. Rosen, Y. Kotsuka. – IEEE Press, Wiley Interscience, A John Wiley &Sons., Inc., Publ., 2006. – 346 p. https://doi.org/10.1002/0471752053
4. Квантово-химическое моделирование метотрексат-фуллереноловых радионуклидных агентов терапии онкологических заболеваний / Е. А. Дикусар [и др.] // Вес. Нац. акад. навук Беларусі. Сер. хiм. навук. – 2019. – Т. 55, № 2. – С. 163–170. https://doi.org/10.29235/1561-8331-2019-55-2-163-170
5. Квантово-химическое моделирование кортизон-фуллереноловых агентов терапии онкологических заболеваний / Е. А. Дикусар [и др.] // Вес. Нац. акад. навук Беларусі. Сер. хiм. навук. – 2021. – Т. 57, № 4. – С. 400–407. https://doi.org/10.29235/1561-8331-2021-57-4-400-407
6. Перспективы создания радоносодержащих агентов радионуклидной терапии / Е. А. Дикусар [и др.] // Вестн. фармации. – 2021. – № 3 (93). – С. 64–72.
7. Противоопухолевая активность производных фуллерена и возможности их использования для адресной доставки лекарств / М. А. Орлова [и др.] // Онкогематология. – 2013. − № 2. – С. 83−92. https://doi.org/10.17650/1818-8346-2013-8-2-83-92
8. Тетракозагидроксибакминстерфуллеренол – реагент будущего / Е. А. Дикусар [и др.] // Химические реактивы, реагенты и процессы малотоннажной химии: тез. докл. ХХХI Международ. науч.-техн. конф.: Реактив – 2018, 2–4 окт. 2018 г., Минск, Беларусь. – Минск: Беларуская навука, 2018. – С. 22.
9. General Atomic and Molecular Electronic-Structure System / M. W. Shmidt [et al.] // J. Comput. Chem. − 1993. − Vol. 14. − N 7. − P. 1347–1363.
10. Gaussian Basis Sets for Molecular Calculations / S. Huzinaga [et al.]. − Amsterdam: Elsevier, 1984. https://doi.org/10.1016/c2009-0-07152-9
11. Acramone, F. Doxorubicin: Anticancer Antibiotics / F. Acramone // Medicinal chemistry, a series of monographs. – Academic Press, Elsiver, 1981. – Vol. 17. – 369 p. https://doi.org/10.1016/c2012-0-01427-5
12. Аверин, П. С. Полиэлектролитные микрои наночастицы с доксорубицином / П. С. Аверин, А. В. Лопес де Гереню, Н. Г. Балабушевич // Вестн. Моск. ун-та. Сер. 2. Химия. – 2016. – Т. 57, № 2. – С. 120–126.
13. Theranostic pH-sensitive nanoparticles for highly efficient targeted delivery of doxorubicin for breast tumor treatment / C. Pan [et al.] // International Journal of Nanomedicine. – 2018. – Vol. 13. – P. 1119–1137. https://doi.org/10.3389/fphar.2020.598155
14. Synthesis, Characterization, Cellular Uptake, and in vitrio Anticancer Activity of Fullerenol-Doxorubicin Conjugates / B. Xu [et al.] // Frontieres in Pharmacology. – 2021. – Vol. 11. – N 598155 (10 p.). https://doi.org/10.3389/fphar.2020.598155
15. Increased quality of life among hepatocellular carcinoma patients treated with radioembolization, compared with chemoembolization / S. R. Gilbertsen [et al.] // Clin. Gastroentrol. Hepatol. – 2013. – Vol. 11, N 10. – P. 1358–1365. https://doi.org/10.1016/j.cgh.2013.04.028
16. Adelstein, S. J. Isotopes for Medicine and the Life Sciences / S. J. Adelstein, F. J. Manning. − Washington, DC: The National Academies Press., 1995. – 144 p. https://doi.org/10.17226/4818
17. Bergmann, H. Radioactive Isotopes in Clinical Medicine and Research / H. Bergmann, H. Sinzinger – Basel: Rirkhäuser Verlag, 1995. – 300 p. https://doi.org/10.1007/978-3-0348-7340-6
18. Thayer, J. S. Relativistic Effects and the Chemistry of the Heavier Main Group Elements / J. S. Thayer // Relativistic Methods of Chemists (Challenges and Advances in Computational Chemistry and Physics) / ed.: Barysz M., Ishikawa Ya.N.-Y.: Springer, 2010. – Ch. 2. – P. 63–97. https://doi.org/10.1007/978-1-4020-9975-5_2
19. Atomic weights of the elements. Review 2000 (IUPAC Technical Report) / J. R. de Laeter [at al.] // Pure and Appl. Chem. – 2003. – Vol. 75, N 6. – P. 683–800. https://doi.org/10.1351/pac200375060683
20. Оценка возможности использования эндоэдрических радон-222-содержащих производных бакминстерфуллеренов С60 и С80 в качестве нанороботов – истребителей опухолевых новообразований / Е. А. Дикусар [и др.] // Мед. новости. – 2013. – № 3 (222). – С. 11–12.
21. Quantum chemical designing of endohedral containing Po210 derivatives of buckminsterfullerene C60 – C80 for development of radionuclide nanosized agents for cancer therapy / E. A. Dikusar [et al.] // Nonlinear Dynamics and Applications: Proceedings of the 21-th Annual Seminar (NPCS’2014) ; Ed. by L. F. Babichev, V. I. Kuvshinov, V. V. Shaparau. – Minsk, May 20–23, 2014. – Vol. 20. – P. 50–55.
22. Банару, А. М. Кристаллоструктурные закономерности строения кристаллогидратов с бесконечными мотивами Н2О…ОН2 / А. М. Банару, Д. А. Банару. – Красноярск: НИЦ, 2021. – 196 с. https://doi.org/10.12731/978-5-907208-48-3
23. Seydel, J. K. Drug-Membrane Interactions: Analysis, Drug Distribution, Modeling / J. K. Seydel, M. Wiese. – Weinheim: Wiley-VCH Verlag GmbH&Co. KGaA, 2002. – 362 p. https://doi.org/10.1002/3527600639
24. Аномальная диффузия радионуклидов в сильно неоднородных геологических формациях / В. М. Головизнин [и др.]; под ред. Л. А. Большова; Ин-т проблем безопасного развития атомной энергетики РАН. – М.: Наука, 2010. – 342 с.
25. The Structure of Biological Membrans / ed.: P. L. Yeagle. – The 3rd ed. – CRC Press Book: Tailor and Frances Gr., 2011. – 398 p. https://doi.org/10.1201/b11018
26. Transport Across Single Biological Membranes / ed.: D. C. Tosteson // Membrane Transport in Biology / ed.: G. Giebisch, D. C. Tosteson, H. H. Ussing. – Berlin; Heidelberg; N.-Y.: Springer-Verlag, 1979. – Vol. 2. – 444 p. https://doi.org/10.1007/978-3-642-46375-4
27. Sandler, S. I. Chemical, biochemical, and engineering thermodynamics / S. I. Sandler. − John Wiley & Sons, 2017. − 1040 p.
28. Nonequilibrium thermodynamics: Transport and rate processes in physical, chemical and biological systems / Y. Demerel. − 3rd ed. – Amsterdam, Oxford: Elsevier Science, 2014. − 792 p. https://doi.org/10.1016/C2012-0-00459-0
29. Mullin, J. W. Crystallization / J. W. Mullin – 4 th ed. – Oxford: Butterworth Heinemann, 2001. – 356 p. https://doi.org/10.1016/B978-0-7506-4833-2.X5000-1
30. Мостапенко, В. М. Эффект Казимира и его приложения / В. М. Мостапенко, Н. Я. Турнов – М.: Энергоатомиздат, 1990. – 216 с.
31. Putz, M. V. DFT chemical reactivity driven by biological activity: applications for the toxicological fate of chlorinated PAHs // Applications of Density Functional Theory to Biological and Bioinorganic Chemistry. – Ed. M. V. Putz, M. P. Mingos / M. V. Putz, A. M. Putz. – Berlin: Springer Link, 2013. – P. 181–231. https://doi.org/10.1007/978-3-642-32750-6_6
32. Heavy Element Research at Dubna / Yu. Ts. Oganessian [et al.] // Nucl. Phys. A. – 2004. – Vol. 734. – N 1–4. – P. 109–123. https://doi.org/10.1016/j.nuclphysa.2004.01.020
33. Sundqvist, B. Fullerens under high pressure / B. Sundqvist // Fullerens: chemistry, physics, and technology / ed. K. M. Kadish, R. S. Ruoff. – N.-Y.: Wiley-Interscience, 2000. – 984 p.