Synthesis of novel rimantadine and adamantane-1-carboxylic acid derivatives with 1,2-azole fragments
https://doi.org/10.29235/1561-8331-2023-59-3-211-224
Abstract
Various adamantane derivatives were obtained by the condensation of rimantadine with substituted hydroxy-benzaldehydes, esters and ethers based on them, as well as 1,2-azole-3-carbaldehydes, followed by reduction. Further acylation of derivatives with active amino and hydroxy groups yielded compounds containing two 1,2-azole fragments in one molecule.
Keywords
About the Authors
E. A. AkishinaBelarus
Akishina Ekaterina A. – Researcher
13, Surganov Str., 220072, Minsk
Е. А. Dikusar
Belarus
Dikusar Evgenij A. – Ph. D. (Chemistry), Senior Researcher
13, Surganov Str., 220072, Minsk
P. V. Kurman
Belarus
Kurman Peter V. – Ph. D. (Chemistry), Leading Researcher
5/2, Academician V. F. Kuprevich Str., 220141, Minsk
V. I. Potkin
Belarus
Potkin Vladimir I. – Academician, D. Sc. (Chemistry), Professor, Head of the Laboratory
13, Surganov Str., 220072, Minsk
References
1. Litvin E. A., Kolyvanov G. B., Zherdev V. P. Biotransformation and pharmacokinetics of adamantane derivatives. Farmakokinetika i Farmakodinamika = Pharmacokinetics and Pharmacodynamics, 2012, no. 1, pp. 18–24 (in Russian).
2. Spilovska K., Zemek F., Korabecny J., Nepovimova E., Soukup O., Windisch M., Kuca K. Adamantane – A Lead Structure for Drugs in Clinical Practice. Current Medicinal Chemistry, 2016, vol. 23, no. 29, pp. 3245–3266. https://doi.org/10.2174/0929867323666160525114026
3. Liu J., Obando D., Liao V., Lifa T., Codd R. The many faces of the adamantyl group in drug design. European Journal of Medicinal Chemistry, 2011, vol. 46, no. 6, pp. 1949–1963. https://doi.org/10.1016/j.ejmech.2011.01.047
4. Al-Mutairi A. A., Al-Alshaikh M. A., Al-Omary F. A. M., Hassan H. M., El-Mahdy A. M., El-Emam A. A. Synthesis, Antimicrobial, and Anti-Proliferative Activities of Novel 4-(Adamantan-1-yl)-1-arylidene-3-thiosemicarbazides, 4-Arylmethyl N’-(Adamantan-1-yl)piperidine-1-carbothioimidates, and Related Derivatives. Molecules, 2019, vol. 24, pp. 4308–4321. https://doi.org/10.3390/molecules24234308
5. Stockdale T. P., Williams C. M. Pharmaceuticals that contain polycyclic hydrocarbon scaffolds. Chemical Society Reviews, 2015, vol. 44, no. 21, pp. 7737–7763. https://doi.org/10.1039/c4cs00477a
6. Soselia M., Geibel I., Zurabishvili D., Samsoniya S. The Synthesis of Adamantane Ring Containing Benzimidazole, Benzoxazole, and Imidazo[4,5-e]benzoxazole Derivatives from 3-Aminophenol. Journal of Heterocyclic Chemistry, 2017, vol. 55, no. 2, pp. 447–455. https://doi.org/10.1002/jhet.3062
7. Piątkowska-Chmiel I., Gawrońska-Grzywacz M., Popiołek Ł., Herbet M., Dudka J. The novel adamantane derivatives as potential mediators of inflammation and neural plasticity in diabetes mice with cognitive impairment. Scientific Reports, 2022, vol. 12, no. 1, pp. 6708. https://doi.org/10.1038/s41598-022-10187-y
8. Chen G., Du F., Liu Zh., Cao R., Sun J., Chen F., Li X.. Preparation of memantine urea derivatives as sEH inhibitors: pat. CN113185451A. Publ. date 30.07.2021.
9. Kadi A. A., Al-Abdullah E. S., Shehata I. A., Habib E. E., Ibrahim T. M., El-Emam A. A. Synthesis, antimicrobial and anti-inflammatory activities of novel 5-(1-adamantyl)-1,3,4-thiadiazole derivatives. European Journal of Medicinal Chemistry, 2010, vol. 45, no. 11, pp. 5006–5011. https://doi.org/10.1016/j.ejmech.2010.08.007
10. Mozhaitsev E. S., Suslov E. V., Rastrepaeva D. A., Yarovaya O. I., Borisevich S. S., Khamitov E. M. [et al.]. Structure-based design, synthesis and biological evaluation of 2 the cage amide derived orthopox virus replication inhibitors. Viruses, 2023, vol. 15, no. 1, pp. 29–43. https://doi.org/10.3390/v15010029
11. Kuznetsov N. Yu., Tikhov R. M., Godovikov I. A., Medvedev M. G., Lyssenko K. A., Burtseva E. I., Kirillova E. S., Bubnov Y. N. Stereoselective synthesis of novel adamantane derivatives with high potency against rimantadine-resistant influenza A virus strains. Organic & Biomolecular Chemistry, 2017, vol. 15, no. 15, pp. 3152–3157. https://doi.org/10.1039/C7OB00331E
12. Anfimov P. M. Activity of Azolo-Adamantanes Against Influenza Virus. St. Petersburg, 2011. 118 p. (in Russian).
13. Zhu J., Mo J., Lin H.-Z., Chen Y., Sun H.-P. The recent progress of isoxazole in medicinal chemistry. Bioorganic & Medicinal Chemistry, 2018, vol. 26, no. 12, pp. 3065–3075. https://doi.org/10.1016/j.bmc.2018.05.013
14. Agrawal N., Mishra P. The synthetic and therapeutic expedition of isoxazole and its analogs. Medicinal Chemistry Research, 2018, vol. 27, no. 5, pp. 1309–1344. https://doi.org/10.1007/s00044-018-2152-6
15. Kletskov A. V., Bumagin N. A., Zubkov F. I., Grudinin D. G., Potkin V. I. Isothiazoles in the Design and Synthesis of Biologically Active Substances and Ligands for Metal Complexes. Synthesis-Stuttgart, 2020, vol. 52, no. 2, pp. 159–188. https://doi.org/10.1055/s-0039-1690688
16. Petkevich S. K., Zhukovskaya N. А., Dikusar E. А., Akishina E. А., Kurman P. V., Nikitina, E. V., Zaytsev V. P., Potkin, V. I. Synthesis of 5-azolyl-2,4-dihydro-3H-1,2,4-triazole-3-thiones and 5-azolyl-1,3,4-thiadiazol-2-amines based on derivatives of 5-arylisoxazole-3-carboxylic and 4,5-dichloroisothiazole-3-carboxylic acids. Chemistry of Heterocyclic Compounds, 2021, vol. 57, no. 5, pp. 594–598. https://doi.org/10.1007/s10593-021-02948-w
17. Potkin V. I., Bumagin N. A., Dikusar E. A., Petkevich S. K., Kurman P. V. Functional Derivatives of 4-Formyl-2-methoxyphenyl Pyridine-4-carboxylate. Russian Journal of Organic Chemistry, 2019, vol. 55, no. 10, pp. 1483–1494. https://doi.org/10.1134/S1070428019100063
18. Jin X.-D., Wang H.-B., Ge C.-H. Crystal structure of 2-methoxy-6-{[1-(1-adamantyl)-ethyl]imino}methylphenol, C20H27NO2. Zeitschrift für Kristallographie – New Crystal Structures, 2011, vol. 226, no. 4, pp. 631–632. https://doi.org/10.1524/ncrs.2011.0283
19. Jin X. D., Han G. C., Liang H. M., Kou L., Tong J., Ren K. J., Zhao X. B. Synthesis, characterization, and crystal structure of cobalt(II) and zinc(II) complexes with a bulky Schiff base derived from rimantadine. Russian Journal of Coordination Chemistry, 2016, vol. 42, no. 8, pp. 539–545. https://doi.org/10.1134/s1070328416080029